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Abstract

Excessive reverberation and noise are detrimental for speech quality and can,
in severe cases, degrade speech intelligibility. This problem particularly a�ects
individuals with hearing loss. Therefore, it is of practical interest to consider
the use of dereverberation and denoising algorithms in digital hearing aids. In
this dissertation we propose two such algorithms, one of which is designed for
dereverberation and the other one, for joint dereverberation and denoising of
speech. The proposed algorithms are based on the well-known multi-channel
Wiener �lter (MWF) and use maximum likelihood estimators (MLEs) of the
power spectral densities (PSDs) of the target speech and the interfering rever-
beration. In both algorithms, the MWF and the PSD MLEs are derived based
on the assumption that the late reverberation is isotropic and is uncorrelated
with the target speech, whose direction of arrival (DoA) is known.

By way of numerical simulations the proposed methods are demonstrated to
work well in synthetic and in realistically simulated reverberation. Moreover,
several instrumental measures indicate that the performance of the proposed
algorithms is higher than that of a similar, recently proposed algorithm by
Braun and Habets. This result can be explained by the fact that the mean
square error of PSD estimation in the proposed algorithms is lower than in
the competing algorithm. Nevertheless, comparison of the speech intelligibility
resulting from the use of the proposed and the competing algorithm did not
reveal statistically signi�cant di�erences between them.

It is known that the MWF is sensitive to errors in the assumption on the
target sound DoA. We investigate this notion by measuring several objective
performance scores in a series of simulations where the simulated target DoA
di�ers from the one assumed in the algorithm. The experiments reveal that
binaural con�gurations of the algorithm (i.e. using microphones of the left and
the right hearing aid) are far more sensitive to DoA errors than the bilateral
con�guration (i.e. using microphones of each hearing aid independently). Ad-
ditionally, we compare the speech intelligibility obtained with the binaural and
bilateral implementations of the proposed algorithm under the condition of cor-
rect DoA assumption. In this situation, the binaural con�guration results in
statistically signi�cantly higher intelligibility than the bilateral con�guration.
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Resumé

Overdreven rumklang og støj skader den opfattede talekvalitet og kan i svæ-
re tilfælde føre til nedsat taleforståelse. Dette problem er særligt udtrykt hos
personer med høretab. Det er derfor af praktisk interesse at overveje brugen
af algoritmer til rumklangs- og støjreduktion i digitale høreapparater. I denne
afhandling foreslår vi to sådanne algoritmer, den ene med det formål at re-
ducere rumklang, og den anden med formålet at reducere både rumklang og
støj. De beskrevne algoritmer er baseret på det velkendte multikanal-Wiener-
�lter (MWF) og anvender maximum-likelihood-estimater af de respektive ef-
fektspektre for det ønskede talesignal og den forstyrrende rumklang. For begge
algoritmer udledes maximum-likelihood estimater og MWF parametre under
antagelse af, at rumklangen er isotropisk og uden korrelation til talesignalet,
samt at talesignalets ankomstretning er kendt.

Ved brug af numeriske simulationer demonstreres det at de foreslåede me-
toder fungerer godt i syntetisk og i realistisk simuleret rumklang. Yderligere
indikerer adskillige instrumentelle mål, at ydelsen af de foreslåede algoritmer
er højere end ydelsen af en lignede metode nyligt foreslået af Braun og Ha-
bets. Dette resultat kan forklares ved det faktum, at middelkvadratfejlen ved
estimeringen af e�ektspektre er mindre i de foreslåede algoritmer end for den
konkurrerende algoritme. En sammenligning af taleforståelighed ved brug af
henholdsvis den foreslåede og den konkurrerende algoritme viste ikke nogen
statistisk signi�kante forskelle.

Det er velkendt, at et MWF er følsomt over for fejl i den antagne ankom-
stretning af talesignalet. Vi undersøger dette problem ved at evaluere adskillige
objektive performancemål i en række simuleringer, hvor den ankomstretning,
der antages af algoritmen, er forskellig fra den faktiske ankomstretning. Disse
eksperimenter viser, at binaurale kon�gurationer af algoritmen (dvs. kon�gura-
tioner, hvor mikrofonsignaler fra både højre og venstre øre anvendes) er langt
mere følsomme over for fejl i ankomstretningen end bilaterale kon�gurationer
(dvs. kon�gurationer, hvor der kun anvendes mikrofonsignaler fra et øre ad
gangen). Derudover sammenligner vi den opnåede taleforståelighed ved hen-
holdsvist binaurale og bilaterale implementeringer af den foreslåede algoritme
under antagelse af, at talesignalets ankomstretning er nøjagtigt kendt. I denne
situation giver den binaurale kon�guration anledning til en statistisk signi�kant
fordel.
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�Why do you go away? So that you can come back.
So that you can see the place you came from with
new eyes and extra colors. And the people there
see you di�erently, too. Coming back to where you
started is not the same as never leaving.�

Terry Pratchett
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Introduction

1 Speech communication in noise and reverber-

ation

Speech is, without doubt, one of the most important modes of communication
between people. Its importance for establishing oneself in any personal, social,
or professional setting can not be overstated. Moreover, exposure to and ac-
quisition of speech is vital for normal development of language, communication
and mental skills in children [62, 87]. Thus, speech has deservedly been a sub-
ject of scienti�c inquiry since antiquity. Today, topics such as spoken language
structure, its history, speech processing, synthesis, and automatic recognition
are each a focal point of separate scienti�c disciplines [9, 10, 58, 111, 116].

Arguably, speech communication hardly ever takes place in ideal conditions.
Indeed, in most cases, the communication channel between the talker and the
listener (including the acoustic environment they reside in) is disrupted by
noise, reverberation, or competing talkers. At times, speech communication is
hindered even further due to the condition of the talker or the listener them-
selves, e.g. due to speech impediment of the former or hearing impairment of the
latter. Motivated by the large number of hearing aid users reporting di�culty
communicating in reverberant and noisy environments [77], in this dissertation
we undertake the task of mitigating the negative in�uence of reverberation and
noise on speech perception by means of digital signal processing in hearing aids.

In Section 1.1, which directly follows this paragraph, we introduce the ba-
sic features of speech signals that are important for speech perception and
processing. Next, we describe two categories of frequently occurring interfer-
ences: additive noise, in Section 1.2, and room reverberation, in Section 1.3,
where we also explain how these interferences a�ect the perception of speech.
We close this chapter with a discussion of some of the mechanisms involved in
speech perception by hearing impaired listeners (Section 1.4). In further chap-
ters, we describe the state of the art in speech dereverberation and denoising
(Chapter 2) and give an overview of the scienti�c contributions of this thesis
(Chapter 3). Lastly, in Chapter 4, we provide a brief summary of ideas that
we consider important topics for future research.

3



Introduction

1.1 Signal of interest: speech

As already mentioned, in this thesis the focus is on speech communication
scenarios. Therefore, we deem it useful to begin by introducing the most im-
portant features of speech signals. For brevity, in this section we describe only
the necessary basics. A more complete presentation of the topic of speech
production and speech perception can be found e.g. in [40, 61].

In the most general sense, speech is a series of sounds used to encode a
message in a language. Speech is generated in a complex process involving
coordinated use of one's lungs, vocal cords, tongue, teeth, lips, and other parts
of the vocal tract. Interaction of all these elements allows for a wide range of
speech sounds, or phonemes, to be produced. Similarly to the process of reading
that requires the reader to correctly recognize letters, speech understanding
requires the listener to correctly recognize phonemes. For example, in English,
the words �kill� and �kiss� can be told apart only by recognizing the di�erence
between the phonemes /l/ and /s/ at the end of these words.

Perceptually, individual phonemes are di�erentiated based on their timbre,
pitch, duration, loudness, etc. These perceptual features are linked to various
physical characteristics of the sound, which, in turn, are shaped by the con�g-
uration of the vocal tract used for production of these phonemes. For example,
generation of some phonemes involves vibration of the vocal cords, while for
production of other phonemes the vocal cords must remain still. This aspect of
articulation determines if the produced sound contains a tonal (i.e. harmonic)
component, which enables the listener to di�erentiate voiced phonemes (i.e.
vowels and some consonants, e.g. /b, d, g, z, v/) from voiceless ones (e.g. /p, t,
k, s, f/). Many more aspects of articulation must be controlled by the speaker
to make a distinction between all the phonemes used in a given language. Cor-
respondingly, in order to recognize these phonemes, the listener must attend
to many more qualities of the perceived sounds than just their tonality.

From a signal analysis perspective, speech is a mixture of a wide variety
of signal types, some of which are (quasi-)periodic, while other ones are noise-
like, or can be described as transients. Thus, the structure of speech signals
includes both temporal and spectral features. For this reason, in engineering
and for research purposes, speech signals are often represented in terms of their
acoustic energy distribution across time and frequency, usually visualized as a
spectrogram. In Fig. 1, a spectrogram of an example speech recording is shown
along with its waveform and a time-aligned transcription of the recorded phrase.
While the waveform in Fig. 1a closely corresponds to the actual physical sound
wave received by the microphone, it does not lend itself to easy visual analysis.
The spectrogram in Fig. 1c is far more useful for this purpose because it re-
veals the underlying structure of di�erent phonemes. With training, phonemes
and words can be recognized without ever listening to the speech recording�a
technique once proposed to allow the deaf to understand speech [106].

Many important features of speech signals can be observed in Fig. 1. First
and foremost, speech is a time-varying signal : the envelope of the waveform in

4



1. Speech communication in noise and reverberation

Fig. 1a varies dynamically across time, as does the power spectral density in the
spectrogram in Fig. 1c. Nevertheless, across short spans of time (∼40ms), the
general speech features re�ected in the spectrogram appear to be approximately
constant. This can be observed in Fig. 2, where an enlarged portion of the
plots from Fig. 1 is shown. Another important feature of speech signals that
is visible in Fig. 1 is the fact that they are a mixture of quasi-periodic and
noise-like spectro-temporal regions. All vowels and many consonants are voiced,
and, therefore, contain a harmonic component. The vibration of the vocal
cords present in the sound of these voiced phonemes is visible as regular pulses
in the waveform in Fig. 2a. The corresponding harmonic structure is visible
as parallel horizontal lines in the spectrograms. Voiceless phonemes lack the
harmonic structure and can be recognized by their noise-like appearance in
the spectrograms. The �nal observation from Fig. 1 that we wish to make is
that repetitions of any given sequence of phonemes generally result in di�erent
signal realizations. This can be observed by comparing the two similar, but
nevertheless di�erent, occurrences of the sequence �china� in Fig. 1. One may
conclude that phonemes can not be described in terms of speci�c values of signal
parameters, but rather in terms of (presumably contiguous) regions in the space
spanned by these parameters. Individual realizations of a given phoneme are
subject to random variation in the production process, but are also in�uenced
by the neighborhood of other phonemes in the utterance (i.e. co-articulation),
intonation and stress due to the sentence structure, and even by the emotional
state of the speaker [40]. Naturally, gender, age, and individual di�erences
between speakers also have a considerable impact on speech characteristics.

Di�erent languages, and even di�erent dialects of the same language, use
di�erent sets of phonemes. For example, some languages use many vowels
(Danish [6]) while others rely more heavily on consonants (Polish [33]). Thus,
in many experimental paradigms, results obtained using one language are typ-
ically not generalizable to other languages. For this reason, when recorded
speech is used as a research tool, it is bene�cial to use speech material that
is diverse in terms of language, or at least contains speech of di�erent talk-
ers. For example, the TIMIT database [41] contains speech of many native,
male and female users of the American English language and, thus, partially
ful�lls this requirement. Another recording that is useful for research pur-
poses is the international speech test signal (ISTS) [59]�a one-minute-long
unintelligible speech-like mixture composed of short segments of speech in dif-
ferent languages. One can argue that spectral and temporal characteristics of
the ISTS are to some extent representative of speech signals in general, which
makes it suitable for use in exploratory and comparative experiments. Despite
the aforementioned considerations, in some cases, speech material read by a
single person in only one language is used, e.g. in speech intelligibility tests
such as Dantale [122].

We close this section by noting that speech is highly redundant and can
be understood even after much of the original signal has been removed. For
example, old analogue telephone systems were su�cient for communication
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Fig. 1: An example speech recording of the phrase: �The Emperor of China is a Chinaman�
in the form of its: (a) waveform, (b) transcription, and (c) spectrogram. The text is time-
aligned with the waveform and the spectrogram. The two occurrences of the sequence �china�
are underlined, allowing for their comparison in terms of signal characteristics.
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Fig. 2: Enlarged section of the plots from Fig. 1 corresponding to the �rst occurence of
the sequence �china�. The voiceless sound �ch� has a noise-like appearance. The harmonic
structure of the voiced phonemes �i-n-a� is visible as (quasi-)periodic pulses in the waveform
and as a harmonic structure in the spectrogram. Three fragments where the signal may be
considered approximately stationary are indicated. (Each of them is 40ms long.)
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1. Speech communication in noise and reverberation

purposes although they transmitted only a part of the full frequency spectrum
of speech [63]. As we describe in detail in Sections 1.2 and 1.3, the speech
signal is also highly robust to noise and reverberation.

1.2 Interference: noise and competing talkers

Speech communication often takes place in noisy conditions. Working, trav-
eling, socializing, and many other important activities in a person's life are
inevitably accompanied by noise. Additionally, in many situations, competing
talkers are active at the same time as the desired talker. All these additional
sounds that are present in an acoustic scene interfere with the target speech, de-
creasing its perceived quality and, in more severe cases, its intelligibility [103].
Moreover, interferences increase the listening e�ort that the listener must in-
vest in the perception process. This may result in fatigue, causing discomfort
and loss of focus, decreasing productivity during meetings and classes [44, 56].

The impact of noise on speech perception can be explained by a mixture of
at least three distinct e�ects: energetic masking, informational masking, and
binaural advantage. We describe them in the following paragraphs.

Energetic masking arises when the sound of interest is rendered inaudible
because of another, co-occurring sound (referred to as the �masker�). Energetic
masking is frequency-speci�c, i.e. it is greatest when the sound of interest and
the masker are of the same frequency and diminishes when these two sounds are
distant in frequency. This behavior is due to the characteristics of the human
hearing and, more speci�cally, of the basilar membrane in the cochlea [95, 104].
Masking can also occur when the target sound and the masker directly follow
one after the other. This is referred to as temporal masking [95].

Evidently, energetic masking has signi�cant implications for noisy speech
perception. As an example, consider an acoustic scenario where stationary
broadband noise (e.g. as in a car cabin) interferes with the target speech. De-
pending on the level of the noise, some parts of the speech signal may be
masked. The quiet phonemes (e.g. consonants such as /p, f, n, m, h/) are
masked more easily than the loud ones (i.e. vowels). This can be demonstrated
using the spectrogram in Fig. 3 where a signal composed of the speech recording
from Fig. 1 and a stationary pink noise interference is presented. Comparing
the spectrograms in Fig. 1 and Fig. 3, it is easy to notice that in Fig. 3 many of
the quieter phonemes from the original signal are buried in noise and that their
spectral features are no longer discernible to the eye. It is reasonable to expect
that some of these phonemes would also be masked. Obviously, the higher the
level of the noise, the greater proportion of the phonemes is masked.

Although listeners are often able to recover the message even from partially
masked speech, this becomes increasingly di�cult for decreasing signal-to-noise
ratios (SNRs). The value of the broadband SNR for which 50% of spoken
words are identi�ed correctly is an often used measure of speech recognition
performance referred to as the speech reception threshold, or the SRT. Besides
the level, spectral and temporal characteristics of the masker may also have
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an in�uence on speech perception [108]. For example, in scenarios where the
masker's level is time-varying, the listeners are sometimes able to reconstruct
the message from the glimpses of speech they perceive during the low-noise-
level segments of the utterance [26]. This ability, however, depends also on the
listener's knowledge of the language and on the context [70].

Informational masking is related to the inability of the listener to focus their
attention on the speech of the desired talker in the presence of a distracting
or disorienting sound, especially a competing talker. The e�ects of energetic
and informational masking usually occur together, in which case the term �in-
formational masking� is used to refer to the loss of intelligibility in excess of
what can be attributed to the energetic masking [19, 27]. Unlike in energetic
masking, the extent of informational masking depends not only on the physical
properties of the masker, but also on its �content�, or �meaning�. For example,
time-reversed speech or speech in a language that is not understood by the
listener has been shown to be a less e�ective masker than speech in a known
language presented normally [27, 107].

Acoustic conditions with multiple competing talkers are frequently encoun-
tered during everyday activities and, consequently, are of particular practical
interest. There exists a large body of research work (likely started by Cherry
in 1953 [20]) focusing on speech perception in multi-talker interference (for an
overview see [19]). From this research it is understood that the �cocktail party
problem� (as it is often referred to) involves not only energetic and informa-
tional masking e�ects, but also other mechanisms, e.g. binaural processing,
which we describe next.

Binaural advantage is a perceptual bene�t arising from the exploitation of
the fact that the sounds received by the left and the right ear are generally
di�erent. In acoustic scenarios where the target and the interference originate
from di�erent locations around the listener, the binaural advantage enables
the listeners to obtain detection thresholds or SRTs that are much lower than
with the use of just one ear. This ability relies on a number of cues, the most
important of which are the interaural level di�erences (ILDs) and the interaural
time di�erences (ITDs) [12]. By exploiting these cues, for speci�c positions
of the target sound source and a single point-source interferer, listeners are
able to detects sounds of levels as low as 15 dB [12] lower than without the
binaural advantage. An analogous phenomenon has been observed in speech
intelligibility tests. In [11], for a frontally positioned target speaker and a
single point-source interferer positioned at 100° o�-center, listeners were able
to achieve SRTs 12 dB lower than when both sources were placed frontally (i.e.
without the bene�t of binaural processing).

1.3 Interference: room reverberation

Besides noise and competing talkers, reverberation is likely the third most often
encountered type of acoustic interference. Reverberation occurs whenever a
sound is emitted in an enclosed space and, thus, is extremely common because

8



1. Speech communication in noise and reverberation

(a)

t [s]

0 0.5 1 1.5 2

f
[H

z
]

0

2500

5000

7500

10000(c)
� th e e mp e ror o f ch i n a i s a ch i n am a n �(b)

Fig. 3: (a) Waveform and (c) spectrogram of the speech signal from Fig. 1 with pink noise
(A-weighted SNR = 13 dB). Many of the quieter phonemes are below the noise �oor and can
not be discerned in the spectrogram (an example of energetic masking).

of the amount of time many people spend inside buildings.
Reverberation arises due to repeated re�ections of a sound from walls and

other surfaces in a room. The sound, after it is emitted by the source, may
travel many times across the room before its energy dissipates due to absorption
in the re�ecting surfaces and in the air. Because of the �nite speed of sound,
the decay of the acoustic energy sometimes takes a noticeable amount of time
(but rarely more than a few seconds). It is exactly this persistence of the
acoustic energy in a room that is the essence of reverberation. The rate at
which the acoustic energy decays in a given room is an important parameter
and is usually expressed as the reverberation time, or T60, which is de�ned
as the time that it takes for the acoustic energy to decay a million times (i.e.
60 dB) [82]. Another important parameter of reverberation is the direct-to-
reverberation ratio (DRR), which is de�ned as the ratio of the acoustic energy
reaching the receiver directly from the source to the total energy of the re�ected
sound. Unlike T60, which is approximately constant across di�erent locations
in a room, the DRR strongly depends on the distance between the source and
the receiver [82].

Reverberation is the superposition of all re�ections arriving at a given loca-
tion in the room. In other words, reverberation is composed of many delayed
and attenuated copies of the original sound. It follows, that at any given mo-
ment, a reverberant space may be considered to be a linear system and, thus,
its in�uence on the sound signal may be modeled by a convolution with an
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Fig. 4: A typical room impulse response. Direct path response, early re�ections, and late
reverberation are labeled accordingly.

impulse response. Room impulse responses (RIRs) are useful representations
of the acoustic properties of rooms and are often measured for technical and
research purposes. It is important to note that RIRs correspond to speci�c
source and receiver positions within a room. Thus, even a small deviation in
the source/receiver position may result in a very di�erent RIR [96]. Moreover,
�uctuations in the air temperature also have an impact on the RIRs [36]. For
these reasons, when a RIR is repeatedly measured, each time a slightly di�erent
response is usually obtained.

An example of a measured RIR is presented in Fig. 4. Three important
parts of that RIR are indicated: direct path response, early re�ections, and late
reverberation. The direct path response is always the �rst impulse in a RIR and
is usually the strongest. This is because the line-of-sight is the shortest possible
path from the source to the receiver and, thus, results in the least attenuation
and delay. The part of RIRs that follows the direct path response is referred to
as the early re�ections. In typical RIRs, such as in Fig. 4, early re�ections are
visible as fairly distinct spikes that continue up to 50�100ms after the onset
of the RIR [82]. The last part of RIRs is referred to as the late reverberation
and is characterized by a noise-like appearance and approximately exponential
decay (barely visible on the time and amplitude scale of Fig. 4) [82].

The three parts of RIRs have speci�c characteristics with respect to per-
ception of reverberant speech. The direct path speech is considered to be
perceptually the most valuable part of the reverberant speech signal because
it is essentially a delayed and attenuated version of the original speech signal
emitted by the talker [15]. By de�nition, the direct path speech arrives at the
listener's location from the direction that the speaker is physically located at.
This is obviously important for speaker localization by the listener.

The early re�ections are usually considered advantageous for speech per-
ception because listeners integrate them into the same auditory percept as the
direct speech [15]. Nevertheless, in some rooms, early re�ections may cause
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Fig. 5: (a) Waveform and (c) spectrogram of the speech signal from Fig. 1 in reverberation
(T60 = 1 s, DRR = 0 dB). Many of the quiet phonemes are masked by the reverberation tail
evoked by the preceding louder phonemes (an example of overlap-masking).

perceivable coloration of the speech signal [82]. Although early re�ections are
likely to arrive from di�erent directions than the direct speech, they normally
do not interfere with the speaker localization. This phenomenon is referred to
as the precedence e�ect [123] (the sound that arrives �rst usually determines
the perceived location of its source).

The part of the reverberation that is detrimental for speech intelligibility is
the late reverberation. This can be explained e.g. by the fact that the speech
energy arriving later than 50ms after the direct sound is likely to overlap with
the next phoneme in a speech utterance. For some phoneme combinations,
such as a loud vowel followed by a quiet consonant, this can result in energetic
masking of the quiet phoneme by the decay of the energy related to the pre-
ceding, louder phoneme (so-called overlap-masking [14]). This e�ect is clearly
visible in Fig. 5, where a synthetically reverberated version of the speech utter-
ance from Fig. 1 is shown. Unlike the direct path and the early re�ections, the
late reverberation does not have a clearly de�ned direction of arrival. Instead,
the late reverberant sound �eld is distributed across all possible directions [45].
In the absence of more detailed information, this spatial energy distribution is
often assumed to be uniform, or isotropic. This corresponds to the assumption
of reverberation di�useness made in statistical room acoustics (see e.g. [82]).

The fact that the direct and early speech (i.e. the useful signal compo-
nent) and the late reverberation (i.e. the interference) arrive at the listener's
position from di�erent directions creates a potential for obtaining a binaural
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advantage. Indeed, binaural listening has been found to signi�cantly improve
speech intelligibility in reverberation, especially when noise is also present (see
e.g. [11, 18, 92]). Interestingly, the presence of reverberation decreases the
binaural advantage in acoustic scenarios with a point-like target source and
competing speech sources, compared to analogous but anechoic conditions [92].

1.4 Speech perception by hearing impaired subjects

As we explained in the last two sections, excessive noise and reverberation can
make speech understanding a di�cult task for any listener. In this section,
we focus on speech perception by listeners with hearing impairment, who are
a�ected by adverse acoustic conditions to even greater extent than normal
hearing subjects. Because the majority of cases of hearing impairment is due
to so-called cochlear hearing loss [93], we consider only this type of hearing
impairment.

The main cause of cochlear hearing loss is the damage to inner and outer
hair cells (IHCs/OHCs) that reside in the organ of Corti inside the cochlea.
This damage may be caused by aging, excessive noise exposure, speci�c drugs
and toxins, or it may be congenital [34, 94]. Because the IHCs and the OHCs
are vital for the cochlea to function properly, their loss has far-reaching con-
sequences for the listener [93]: inability to perceive quiet sounds (loss of sensi-
tivity), decreased dynamic range and abnormal loudness perception, inability
to discriminate between co-occurring sounds (loss of spectro-temporal selectiv-
ity), decreased ability to bene�t from binaural listening, and more. Loss of
sensitivity and abnormal loudness perception can, in principle, be remedied by
using hearing aids with signal ampli�cation and dynamic range compression.
In contrast to that, loss of spectro-temporal selectivity and decrease in binaural
processing advantage are, even conceptually, more di�cult to mitigate.

Because in this thesis we are concerned with speech communication sce-
narios in noise and reverberation, spectro-temporal selectivity of the hearing
and binaural listening advantage are of particular relevance. Thus, the work
presented in this thesis is aimed towards mitigating the in�uence of the loss
of these hearing abilities. Because reduced hearing sensitivity and phenomena
related to loudness perception can be considered less important for reverberant
and noisy speech perception, we assume that they have already been compen-
sated for, e.g. by a dynamic range compression system as usually found in
hearing aids [52, 93].

In noisy and reverberant speech communication scenarios, reduced spectro-
temporal selectivity and binaural processing ability of the impaired hearing
generally results in: (a) higher SRT in noise, (b) decreased ability to segregate
the target speech from competing voices, and (c) reduced robustness against
reverberation. This may lead to increased listening e�ort, di�culties in com-
munication, and, as a potential consequence, in social isolation. Therefore,
in speech enhancement systems for hearing aids the goal is frequently to: (a)
suppress the background noise, (b) suppress the sound of competing speakers
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2. Enhancement of reverberant and noisy speech

while preserving the target speech component, and (c) reduce the amount of re-
verberation. Ideally, this should facilitate normal communication and decrease
the listening e�ort.

2 Enhancement of reverberant and noisy speech

In hearing aids, but also in other speech communication applications such as
hands-free telephony and voice controlled devices, the target speaker is al-
most always at a considerable distance from the microphone(s) of the receiv-
ing/recording device (in the range of meters). Because of this distance, the
speech-to-interference ratio of the received signal is typically much lower than
in close-microphone applications such as traditional telephony (where the dis-
tance between the target source and the microphone(s) is in the range of cen-
timeters). This is caused by the fact that ambient noise and (late) reverberation
have approximately the same level across all positions in a room, whereas the
target speech level decreases as the distance from the target speaker increases.

To enhance the noisy and reverberant speech signal, noise reduction and/or
dereverberation algorithms are used. These have the goal of restoring speech
quality, intelligibility, or automatic speech recognition performance. In hearing
aids, speech intelligibility improvement is of greatest interest. Moreover, certain
speech enhancement algorithms have been shown to reduce the listening e�ort
[109], which is also bene�cial for the hearing aid users. In the literature, many
types of processing algorithms have been proposed for speech dereverberation
and/or noise reduction in many applications, including hearing aids. In this
chapter, we provide an overview of the state of the art in this area.

Most of the existing speech denoising and dereverberation algorithms fall
into one or more of the following categories [86, 98]: (a) spectral processing
algorithms, (b) spatial processing algorithms, or (c) system identi�cation and
inversion algorithms. For clarity, we discuss these categories in separate sec-
tions, focusing on algorithm types applicable to hearing aids.

2.1 Spectral processing

Spectral-based speech enhancement algorithms operate on a spectro-temporal
representation of the noisy/reverberant speech, typically, by manipulating the
short-time Fourier transform (STFT) coe�cients of the input signal. Spectral-
based algorithms are used for noise and reverberation reduction based on the as-
sumption that the target speech and the interference are di�erently distributed
in the spectro-temporal plane. This allows for selective attenuation of the
spectro-temporal regions dominated by the interference. Processing paradigms
range from purely heuristic, through statistical model-based, and up to recent
methods based on e.g. neural networks or non-negative matrix factorization.

Heuristic methods of speech spectral enhancement include several classes
of algorithms based on di�erent assumptions and spectrum modi�cation tech-
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niques (for an overview see e.g. [85]). For example, the long-established method
of spectral subtraction is based on the idea that enhanced speech may be ob-
tained by subtracting an estimate of the magnitude spectrum of the interfer-
ence (or a power thereof) from that of the input signal. In the literature, there
exist many spectral subtraction algorithms for speech enhancement in noise
(e.g. [13, 71]) and in reverberation (e.g. [48, 83]). While heuristic speech spec-
tral enhancers provide some level of interference reduction, they are generally
considered inferior to algorithms based on statistical models and optimality
criteria [55], whose description follows.

Statistical model-based spectral enhancement algorithms use an a priori
statistical model of the input signal STFT and its components. Algorithms
are derived by minimizing a chosen cost function given the assumed statisti-
cal model of the signal (for overviews, see [8, 86]). In statistical model-based
spectral enhancers, input signal STFT coe�cients are usually assumed to be
statistically independent across frequency and time. Moreover, the target and
the interference are most often assumed to be mutually statistically indepen-
dent, which allows the power spectral density (PSD) of the input signal to be
modeled as the sum of the PSDs of individual signal components. Most algo-
rithms based on the aforementioned assumptions di�er in: (a) the type of the
cost function used in the derivation, (b) the assumed probability distribution
of the speech component of the STFT, (c) the assumed probability distribution
of the interference component of the STFT, and (d) the manner in which the
parameters of the speech and interference statistical models are estimated.

One of the most often used cost functions is the minimum mean square
error (MMSE) of the complex-valued STFT. If a circularly-symmetric com-
plex Gaussian distribution of target and interference STFT coe�cients is as-
sumed, optimization with respect to this cost function results in the well-known
Wiener �lter. Instead of the MMSE of the complex-valued STFT coe�cients,
other cost functions are also sometimes used. For example, optimization of the
MMSE of the short-time spectral amplitude (STSA) under target and interfer-
ence Gaussianity assumption leads to the well-known STSA-MMSE algorithm
by Ephraim and Malah [37]. It is important to note that the assumption that
the speech STFT coe�cients are complex Gaussian distributed is only approxi-
mately correct. In fact, is has been demonstrated that speech STFT coe�cients
are much better described by super-Gaussian distributions, particularly by the
Laplace distribution [42, 66] or the Gamma distribution [39, 89]. Using these
super-Gaussian distributions to model the speech (and sometimes noise) STFT
coe�cients leads to algorithms that are somewhat more complicated than the
Wiener �lter or the Ephraim-Malach algorithm, but can result in an improved
speech enhancement performance [39, 89].

Generally speaking, spectral enhancement algorithms depend on the knowl-
edge of statistical parameters of the input signal, of which at least some are
not known and have to be estimated from the noisy/reverberant observations.
For example, in many noise reduction spectral enhancement algorithms, the
noise PSD is one of these required parameters. Based on the assumption
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that the noise is approximately stationary, minima-tracking noise PSD esti-
mators are frequently used, for example the well-known minimum statistics
method [88], or later methods such as [21, 43, 54]. Besides the noise PSD, the
signal SNR (i.e. the ratio of the target speech and the interference PSDs) is
also required by most spectral enhancement algorithms1. In many cases, this
quantity is referred to as the a priori SNR. A classical method for a priori
SNR estimation is the decision-directed estimator by Ephraim and Malah [37].
Newer and more advanced methods are also used, e.g. [17, 22, 24]. Importantly,
in speech dereverberation algorithms, the interference can not be assumed to
be stationary or slowly-evolving compared to the target speech PSD (as it is
in many spectral-based noise reduction algorithms). Thus, in spectral-based
speech dereverberation algorithms, specialized late reverberation PSD estima-
tors are used, many of which rely on the assumption that the late reverberant
energy decays exponentially [105], e.g. [50, 51, 83].

Relatively recently, spectral enhancement algorithms departing from the
usually employed assumption of statistical independence of the STFT coe�-
cients across time and frequency have been proposed. These algorithms op-
erate on patches of the STFT, which allows them to exploit spectro-temporal
dependencies�an obvious advantage for processing of structured signals such
as speech (see Section 1.1). Some methods are based on the non-negative ma-
trix factorization (NMF) technique and model target speech and interference
spectrograms as two di�erent low rank matrices whose sum equals the input
signal spectrogram [72, 91]. Methods based on supervised learning, e.g. deep
neural networks (DNNs), are also increasingly common, e.g. [53, 124].

Besides the aforementioned speech enhancement algorithms operating in
the STFT domain, other algorithms using other signal transforms (e.g. the
Karhunen�Loève transform, often implemented using the singular value de-
composition) also exist. These algorithms have the aim of enabling separation
of the signal into the target and interference subspaces and subsequent projec-
tion of the noisy observation onto the target subspace [38, 68, 84].

Spectral enhancement algorithms are primarily intended for use in sin-
gle microphone systems, but some of them can also be used with multiple
microphones. For example, the spectral-based reverberation reduction algo-
rithms in [49, 51] can be used with one, but also with many microphones,
which improves these algorithms' performance. Similarly to many other multi-
microphone speech enhancement algorithms, these algorithms are composed
of a spatial pre-processor and a spectral enhancement scheme. We describe
more of this class of enhancement algorithms together with spatial processing
algorithms in the following section.

1It should be noted that, given a noise PSD estimate, a priori SNR estimation is e�ectively
equivalent to target speech PSD estimation.
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2.2 Spatial processing

Spatial-based speech enhancement algorithms work by jointly processing and
combining signals of an array of microphones. This allows for realization of
systems that have a spatial selectivity pattern that is di�erent (and usually
more directional) than that of any of the individual microphones. Spatial-
based algorithms are used for speech enhancement based on the assumption
that the target speech and the interferences impinge on the microphone array
from di�erent spatial regions. This allows for selective attenuation of the sounds
impinging from directions other that of the target speech.

One of the simplest methods of spatial processing is to time-shift the mi-
crophone array signals such that sounds impinging on the array from a chosen
target direction are aligned. Subsequently, these microphone signals are added
together, causing coherent summation of the target sound (speech) and incoher-
ent summation of sounds arriving from other directions. Fittingly, this method
is referred to as the delay-and-sum beamformer (DSB) [118]. Although the DSB
optimally reduces interference that is uncorrelated between microphones (e.g.
microphone self-noise), it is not optimal for reduction of point noise sources or
di�use interference such as late reverberation. This problem can be solved by
using more advanced, signal-dependent beamformers. For example, minimum
variance distortion-less response (MVDR) and linearly constrained minimum
variance (LCMV) beamformers [28] use target and interference statistics to
optimally reduce the interference while preserving the target signal with a pre-
speci�ed gain. Many more beamforming techniques exist, a comprehensive
overview of which can be found e.g. in [119].

As previously mentioned, beamformers are frequently used in combination
with spectral enhancement schemes, which results in a two-step algorithm. In
this context, the spectral enhancement step is referred to as a post-�lter be-
cause it is typically applied after the spatial processing step. Among the �rst
methods of this type were heuristic algorithms for speech dereverberation and
noise reduction such as [4] and [127], both composed of a DSB and a coherence-
based post-�lter. Similarly to the DSB, these post-�lters work best in scenarios
where the target speech component is coherent between the microphones and
the interference is spatially white. However, in realistic acoustic scenarios the
interference is often generated by a point-source or is di�use and, therefore,
exhibits some degree of spatial correlation, particularly at low frequencies [35].
This limits the speech enhancement performance of coherence-based post-�lters
and the DSB. Nevertheless, coherence-based post-�lters have an important ad-
vantage over the single-channel, minimum-statistics-based spectral enhance-
ment algorithms described earlier: they are capable of adapting to the inter-
ference level variations not only during speech absence, but also during speech
activity. Thanks to this feature, coherence-based post-�lters are suitable for
reverberation reduction in speech signals without making any assumptions on
the reverberant energy decay.

Limitations of the DSB and the coherence-based post-�lters can be over-
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come by using algorithms that are based on optimality criteria and a statistical
model of the signal. Arguably, one of the most frequently used statistically-
motivated spatial enhancement algorithms for speech processing is the multi-
channel Wiener �lter (MWF) [30�32]. Similarly to the single channel Wiener
�lter described in the previous section, the MWF is derived by optimizing the
MMSE cost function under the assumption that the signal components are
Gaussian. In acoustic scenarios where the target speech is generated by a sin-
gle point-source, the MWF can be factored into an MVDR beamformer and
a single channel Wiener post-�lter [112]. This decomposition of the MWF is
frequently used in practical applications because it allows for the beamformer
and the post-�lter to be controlled and monitored separately.

As mentioned earlier, the MVDR beamformer depends on certain statistics
of the input signal components. Speci�cally, required are a so-called target
steering vector and the inter-microphone covariance matrix of the interference.
In acoustic scenarios where the spatial features of the target and the interference
are time-invariant, these required statistics can also be assumed to be time-
invariant and, sometimes, even to be known a priori. In other applications,
on-line estimators of the target steering vector (or, sometimes equivalently, the
DoA) [23, 115] and the covariance matrix of the interference [110] must be
employed. The second part of the MWF�the spectral Wiener post-�lter�
depends on the a priori SNR or, equivalently, on the time-varying target and
interference PSDs. Estimation of these PSDs from multiple microphone signals
in reverberant and noisy conditions using the maximum likelihood methodology
is one of the main focus areas in this thesis.

2.3 System identi�cation and inversion

Unlike the speech dereverberation algorithms based on spectral or spatial fea-
tures of the signal, system identi�cation and inversion algorithms exploit the
convolutive nature of the reverberation. More speci�cally, algorithms of this
type attempt to estimate the RIR (system identi�cation) and apply a �lter
that equalizes it (system inversion). Compared to the already described classes
of speech dereverberation algorithms, system identi�cation and inversion algo-
rithms are unique in that they, theoretically, can achieve perfect dereverber-
ation [90], provided that multiple microphone signals are available (and some
additional conditions).

The research in the area of speech dereverberation by system identi�cation
and inversion has started several decades ago [90, 99]. Of particular importance
is the contribution in [90], where the multiple-input/output theorem (MINT)
is postulated. Many challenges in practical application of the system identi�ca-
tion and inversion algorithms have been encountered, but signi�cant progress
has been made since. Speci�cally, challenges related to RIR invertibility and
sensitivity to erroneous RIR estimates and additive interference have been im-
portant focus points, e.g. in [57, 97].

As explained in Section 1.3, from the point of view of speech intelligibility,
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reduction of the late reverberation is of particular interest. This fact has been
one of the motivations behind an important class of system identi�cation and
inversion algorithms that instead of equalizing the RIR, attempt to shorten it
(so-called channel shortening) or to reduce the energy of the late reverberation
while preserving the direct and early sound energy, e.g. [128]. More recently,
important contributions in this area were made, in particular the partial MINT
(PMINT) by Kodrasi [78�80].

2.4 Special considerations related to hearing aids

Speech enhancement algorithms are increasingly often used in state-of-the-art
hearing aids [52]. However, several important aspects of this speci�c application
must be considered for the hearing aid and for the enhancement algorithm to
serve their respective purposes without interfering with each other. We describe
some of these aspects in the following paragraphs.

Functional blocks of a typical hearing aid

All hearing aids contain at least one input transducer (i.e. a microphone),
an output transducer (i.e. an earphone2), and a signal processing circuit. In
the vast majority of state-of-the-art hearing aids the processing circuit is a
digital signal processor (DSP). In it, usually at least three main functionalities
are implemented [52, 93]: hearing loss compensation, feedback reduction, and
signal enhancement. A diagram of the signal �ow between processing blocks
corresponding to these functionalities is depicted in Fig. 6.

Arguably, the most important functionality of hearing aids is the hearing
loss compensation, which is usually realized as a dynamic range processor with
a compressive characteristic [93]. This allows quiet sounds to be ampli�ed more
than the loud ones, such that the hearing aid user can perceive a wide dynamic
range of sounds at a comfortable, yet audible, level.

Depending on the severity of the hearing loss, hearing aids might apply
a signi�cant, time- and frequency-dependent ampli�cation of the input sig-
nal. This, in connection with small distances between the microphones and
the earphone, is likely to result in acoustic feedback between the output and
the input of the hearing aid. In result, whistling or howling sounds are pro-
duced, especially when a hand or a telephone is held against the ear. To avoid
this undesirable phenomenon, feedback reduction algorithms such as frequency
shifting, adaptive notch �ltering, or adaptive feedback cancellation are often
used in hearing aids [52]. A systematic overview of the state of the art in the
area of feedback cancellation may be found in [120] (for general applications)
and in [46] (for application in hearing aids).

As described in Section 1.4, hearing impairment not only results in inaudi-
bility of quiet sounds, but also in increased di�culty in speech understanding

2Hearing care professionals usually refer to the hearing aid's output transducer as the
�receiver�.
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Fig. 6: Simpli�ed diagram of the signal �ow in a state-of-the-art hearing aid.

in noisy conditions. To mitigate this problem, signal enhancement algorithms
are often used in hearing aids. For the reasons explained in Section 1.4, in this
thesis we neglect the hearing loss compensation and the feedback reduction
processing blocks, and focus on speech enhancement algorithms for hearing aid
applications.

Technical requirements for speech enhancement algorithms used in
hearing aids

Several technical requirements exist which impose limitations on the speech
enhancement algorithms that are used in hearing aids. For example, the signal
delay introduced by the hearing aid must be kept to a minimum. Otherwise,
several types of problems might arise. If the delay is larger than approximately
80ms, problems with respect to synchronousness of visual and auditory stimuli
can arise [113]. This is particularly detrimental for the hearing impaired as
they rely on lip-reading more than normal hearing listeners [25]. However,
even shorter delays can interfere with speech perception by the hearing aid user.
This is so because many hearing aids use so-called open �ttings, which allow the
unprocessed, airborne sound to enter the ear canal. Thus, the sound reaching
the ear drum and perceived by the user is a combination of the unprocessed and
the processed (and delayed) sound. This creates a potentially disturbing comb
�ltering e�ect which must be avoided. For these reasons, signal processing
algorithms used in hearing aids cannot introduce delays that exceed a few,
normally not more than ten, milliseconds.

The second technical limitation imposed by the application in hearing aids
is the amount of processing power available for use in these small and battery
powered devices. While technical advancements in semiconductor manufactur-
ing continue to make this limitation more and more relaxed, computational
complexity of processing algorithms is an important factor that must be con-
sidered in hearing aid design.

Lastly, unlike many other electronic devices (e.g. smartphones) that are de-
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signed to actively engage their users, hearing aids must operate without much,
or preferably any, user interaction. Thus, speech enhancement algorithms used
in hearing aids must, ideally, operate correctly under all possible acoustic condi-
tions or, alternatively, automatic detection of relevant acoustic scenarios must
be implemented and used to select di�erent processing schemes according to
the changing acoustic conditions.

Distortion of spatial cues

As mentioned in Section 1.2, human's ability to localize and separate sound
sources relies on a number of cues. Clearly, it is of interest to ensure that
hearing aids do not distort these cues, or at least that the introduced distortions
do not interfere with the spatial awareness of the hearing aid user.

Some of the most important spatial cues are the already mentioned binaural
cues [12]: ILDs and ITDs. Hearing aids, due to the fact that they change the
level and introduce phase di�erences in the processed signals, generally distort
these cues. Perfect preservation of binaural cues is nearly impossible to achieve
in hearing aids, but certain steps may be taken to minimize ITD and ILD
distortions. For example, hearing loss compensation normally involves signal
ampli�cation with a time-varying, signal-dependent gain which, in general, is
di�erent in each hearing aid3. Clearly, this results in ILD distortions. However,
if the same time- and frequency-dependent gain could be applied to the signals
in both hearing aids, ILD distortions could be minimized. In fact, in some
hearing aids it is possible to use a wireless communication channel between the
left and the right device to exchange the necessary information and synchronize
the applied gains. Apart from amplifying the signal, hearing aids also introduce
phase di�erences in the processed signals. The resulting ITD distortions can
be reduced if the two hearing aids introduce the same amount of latency and
perform the same operations on the signal (e.g. the same type of beamforming).

Certain spatial cues (particularly the ones relevant for sound localization
in the vertical plane) are not related to interaural di�erences, but rather to
spectral features that stem from the shape of the pinna [12]. Unfortunately,
these cues may be lost when behind-the-ear hearing aids are used. Although
this problem theoretically could be solved by using in-the-ear or in-the-canal
hearing aids, i.e. hearing aids whose microphones are located at the entrance
of the ear canal, the experimental results in [101] suggest otherwise. This
is in contrast to a more recent study where state-of-the-art hearing aids of
behind-the-ear, in-the-ear, and in-the-canal types have all been found to allow
for near-normal sound localization in the vertical plane [29]. Clearly, a full
understanding of spatial perception in the case of aided, impaired hearing is
yet to be reached by the research community.

3In this thesis we assume that the user is �tted with two hearing aids, one on each ear.
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Binaural and bilateral hearing aids

In most cases, hearing aids work independently of each other or with only lit-
tle information, such as program or volume settings, synchronized wirelessly
between them (so-called bilateral con�guration). Future hearing aids are ex-
pected to make use of a �binaural link� � a digital transmission channel allowing
the hearing aids to exchange information about the microphone signals in real
time (resulting in a so-called binaural con�guration) [52]. As described above,
this can be used for minimizing ILD distortions. Moreover, the binaural link
can be used to transmit microphone signals between the hearing aids, enabling
their joint processing by a signal enhancement algorithm. This is known to
increase the performance of certain spatial processing algorithms such as the
MWF [117].

2.5 Evaluation of speech enhancement algorithms

It is not a trivial task to compare and rate the performance of speech en-
hancement algorithms in a meaningful way. This is because there is no single
de�nition of what constitutes a �good� speech enhancement algorithm. In more
formal words, there exist many potential performance criteria that can be used
to evaluate and compare speech enhancement algorithms. In this section, we
give a brief overview of the most often used performance measures applicable
to speech enhancement algorithms.

In this thesis, the focus is on speech enhancement algorithms intended for
improvement of speech intelligibility (or quality) as attained (or perceived)
by human listeners. Speech enhancement algorithms are also used for other
purposes, e.g. as a front-end in automatic speech recognition systems. However,
these algorithms and the performance measures used for their evaluation are
outside of the scope of this overview.

Arguably, listening tests with human subjects are the most direct and re-
liable method of evaluating speech enhancement algorithms whose output is
intended for presentation to human listeners. Listening tests are a versatile
research tool because they enable a wide range of important subjective and
objective parameters to be measured. Subjective parameters, such as speech
quality or the perceived amount of reverberation, are usually measured using
the mean opinion score (MOS) or the multiple stimuli with hidden reference and
anchor (MUSHRA) methodologies. Objective parameters, such as speech intel-
ligibility, are measured using other methods, e.g. the diagnostic rhyme test [1],
digit triplets tests [64, 102], or sentence tests with [121, 122] or without [100] a
�xed grammatic structure. Besides subjective and objective evaluation of per-
ceptual qualities of sounds, experimental paradigms for indirect measurement
of the listening e�ort also exist, e.g. [109, 126]. Despite their versatility and re-
liability, listening tests with human subjects have several disadvantages: they
are time-consuming, require the availability of su�cient (potentially hearing
impaired) subjects, and their results may not always be easy to interpret.
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In order to circumvent the inconveniences related to listening tests with
human subjects, many predictors of listening test results have been proposed.
These predictors are normally based on a computational model of a given as-
pect of auditory perception, e.g. perceived speech quality or intelligibility. The
perceptual evaluation of speech quality (PESQ) algorithm [2] and its successor,
the perceptual objective listening quality assessment (POLQA) [3, 7], are some
of the most often used speech quality predictors. Speech intelligibility predic-
tors also exist, e.g. the short time objective intelligibility measure (STOI) [114]
and its later extensions [65] that improve its reliability in acoustic scenarios
with modulated interference [69] or enable it to predict the in�uence of bin-
aural e�ects [5]. Specialized speech intelligibility and quality predictors for
hearing aids, HASPI and HASQI, respectively, have been proposed by Kates
in [73, 74].

The above-mentioned instrumental performance measures are convenient to
use because they can be relatively quickly calculated, e.g. based on a series of
computer simulations of the acoustic scenario and the enhancement algorithms
that are of interest. However, instrumental performance measures should be
used with care as the range of acoustic situations and processing types for which
they can produce reliable results is not necessarily well-known and is certainly
limited. Although computational predictors of listening test results are not as
versatile or reliable as real listening tests, the fact that they can be relatively
easily computed for a large number of test conditions makes them particularly
suitable for exploratory research. Ultimately, a real listening test is usually
conducted to validate and con�rm the predictions of the model.

Besides perceptual measures and estimators thereof, technical performance
measures may also be useful and may provide important insights into difer-
ences between algorithms. Unlike the predictors of listening test results treated
above, the technical performance measures aim at characterizing technical as-
pects of the evaluated algorithms. It should be noted, however, that the di�er-
ence between predictors of listening test results and technical performance mea-
sures is not clean-cut and some measures share characteristics of both classes.
For example, SNR improvement is a simple, useful, and often used technical
performance measure. However, to account for the fact that di�erent frequen-
cies are of di�erent importance for speech perception, frequency-weighting of
the SNR improvement is often used [60]. Technical performance measures typ-
ically compare the output of the signal processing algorithm or communication
device in question with an undistorted, unprocessed reference signal. Hence,
these measures are mostly useful in laboratory situations where a clean refer-
ence signal is readily available. Other technical performance measures allow for
separate evaluation of the interference reduction performance and the amount
of distortions introduced into the speech component of the signal (see e.g. the
measures de�ned in [39, 47]). For more examples of technical performance
measures see [60, 75].
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3 Summary of contributions

The main topic of the work presented in this thesis is speech dereverberation
in hearing aids. Because in many acoustic scenarios speech is distorted not
only by reverberation but also by noise, we focused on algorithms that can be
used for joint reduction of these two types of interferences. As described in
Chapter 2, many classes of speech dereverberation and denoising algorithms
exist in the literature. Due to the requirements imparted by the application
in hearing aids, we considered only the algorithms that can operate with low
input/output latency. Moreover, out of consideration for battery life and due
to physical limitations in the computing power available for use in hearing
aids, we focused on algorithms whose complexity allows for implementation on
modern or near-future hearing aid platforms.

Amongst the algorithm classes mentioned in Chapter 2, spectral- and
spatial-based algorithms �t well with the requirements of the hearing aid ap-
plication. They both can be implemented as on-line or block-based processing
schemes. Moreover, they tend to be of lower computational complexity than
system identi�cation/inversion algorithms. To achieve maximum performance,
in this thesis we focused on two-step algorithms where a spatial pre-processor
is combined with a spectral post-�lter, allowing us to exploit both the spectral
and spatial structure of reverberant and noisy speech signals.

A general diagram depicting the structure of the type of algorithms consid-
ered in this thesis is shown in Fig. 7. Notably, in this structure, the spectral
post-�lter is based on the multi-channel input of the spatial pre-processor (in-
dicated by the the dotted lines in Fig. 7) as opposed to the single channel
output of this pre-processor. Thus, the class of algorithms that we considered
is more than just a concatenation of a spatial- and a spectral-based process-
ing algorithm. Moreover, we considered binaural hearing aids, i.e. composed
of an interconnected pair of hearing devices, one on each of the user's ears.
This enabled us to evaluate the expected bene�t of binaural hearing aids over
traditional bilateral con�gurations (without the binaural link).

The choice of the speci�c type of the spatial pre-processor and the spec-
tral post-�lter was driven by our assumptions on speech, reverberation, and
noise Gaussianity and their mutual statistical independence. In such a sig-
nal scenario, minimization of the mean square error leads to the multi-channel
Wiener �lter (MWF) which, under some additional conditions, can be factored
into an MVDR spatial beamformer and a single channel spectral Wiener post-
�lter. For implementation of the MWF, knowledge of the target speech and
the interference (noise and reverberation) inter-microphone covariance matri-
ces is required. These are not normally known, but they can be estimated if
an appropriate statistical model of the reverberant and noisy speech signal is
employed.

In the work presented in this thesis, we assume that reverberation is isotro-
pic (i.e. it is evenly distributed across all direction around the hearing aid user)
and that the target speech is at a known and time-invariant location with re-
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Fig. 7: Block diagram of the class of speech enhancement systems considered in this thesis.
In binaural hearing aids, the microphone signals are exchanged between the left and the
right device. In a bilateral hearing aid, the binaural link is absent and the two devices work
independently of each other.

spect to the user. This allows us to formulate a statistical signal model suitable
for derivation of the MWF. As we describe in more detail in the main body of
this thesis (particularly in Paper A and C), estimation of the target speech and
the reverberation power spectral densities (PSDs) is crucial for implementation
of the MWF. Much of the contributions of this thesis pertain to the problem
of estimation of these parameters.

3.1 Scope of contributions

The main body of this thesis (i.e. Part II) consists of a collection of research
papers. In this section we summarize contributions made in each of them and
outline how they are related to each other.

The �rst three papers are primarily devoted to the problem of estimation
of the target speech and the late reverberation PSDs in the signal scenario de-
scribed above. Overall, we proposed two estimators of the target speech and the
late reverberation PSDs. The �rst estimator is applicable to a simpli�ed signal
scenario without the additive noise component and is presented in Paper A
and further evaluated in Paper B. This simpli�ed model of the reverberant
speech signal allowed the use of a pre-existing maximum likelihood estimator
of the speech and reverberation PSDs. The second PSD estimator is proposed
in Paper C and is a generalization of the estimator from Paper A for acoustic
conditions that include additive noise. This resulted in a more realistic, but
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Table 1: Table summarizing relations between the collected papers. Rows indicate di�erent
acoustic scenarios and columns indicate di�erent scopes of the experiments considered in
individual papers. Journal papers are outlined with a thicker line.

[A]
EUSIPCO

2014

[B]
ICASSP
2015

[D]
60th AES

2016

[C] � IEEE/ACM TASLP

[81] � ICASSP 2016

[E]
submitted to

JAES

Acoustic
scenario

First presentation
of a new algorithm

Comparison with
the method in [16]

Robustness to
DoA errors

speech
+

reverberation

speech
+

reverberation
+

noise

also more complicated, model of the input signal. In e�ect, a novel PSD MLE
needed to be derived for this purpose.

The last two of the collected papers explore the performance of the MWFs
based on the two proposed estimators in an acoustic scenario which was found
to be particularly problematic for the proposed algorithms: when the assumed
target speech direction of arrival (DoA) does not correspond exactly to the
actual DoA. Sensitivity to this error is highly dependent on the use of the
binaural/bilateral hearing aid con�guration. For this reason, we have included
four di�erent microphone array con�gurations in our experiments. In Paper D
and in Paper E we evaluate the robustness to DoA mismatch of the algorithms
from Paper A and Paper C, respectively. Moreover, in Paper E we compared
a binaural and a bilateral con�guration of the MWF from Paper C in terms of
speech intelligibility.

For clarity, we summarize the relations between the collected papers in
Table 1. The acoustic scenarios considered in individual papers are determined
by the rows of the Table 1 and the types of experiments are indicated by its
columns. In the following paragraphs we provide a detailed description of
contributions made in the individual papers.

[A] �Maximum likelihood based multi-channel isotropic reverbera-
tion reduction for hearing aids�

In Paper A, we propose an MWF-based speech dereverberation algorithm which
uses a maximum likelihood estimator of the signal components' PSDs. The
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MWF and the PSD estimator are based on the assumption that the micro-
phone signal has only two components: cylindrically isotropic reverberation
and target speech that is generated by a point-source. This assumption re-
sults in a particularly simple MWF structure where the beamforming part is
constant. Additionally, for this simple signal model, the MLE of the target
speech and the reverberation PSDs is mathematically identical to estimators
from [76, 125], which are of closed form.

Through a series of simulations, we demonstrate that the proposed algo-
rithm is able reduce reverberation in both synthetic and realistic reverberant
conditions. Moreover, we show that, as could be expected, a 4-microphone, bin-
aural hearing aid con�guration of the algorithm outperforms a 2-microphone,
single hearing aid version.

[B] �Multi-channel PSD estimators for speech dereverberation � a
theoretical and experimental comparison�

In Paper B, we compare the algorithm proposed in Paper A with another MWF-
based speech dereverberation algorithm proposed by Braun and Habets in [16].
The algorithm in [16] is based on a similar set of assumptions as employed in
Paper A. However, unlike in Paper A, in [16] an additive noise component
is included in the signal model. To enable a meaningful comparison of the
algorithms, in this paper we assume that this noise component is absent.

Besides the signal model, the only signi�cant di�erence between the com-
pared algorithms is in the used speech and reverberation PSD estimators. Thus,
initially, our comparison focuses on these PSD estimators. Through numeri-
cal simulations as well as analytical derivations, we show that for microphone
arrays of more than two microphones the PSD estimator from Paper A outper-
forms the estimator from [16] in terms of estimation accuracy. Additionally,
analytical derivations allow us to conclude that for arrays of two microphones
the PSD estimators form Paper A and [16] are identical.

For completeness, we compare the speech dereverberation performance of
the MWFs based on the two PSD estimators. The results indicate that the
better estimation accuracy of the method in Paper A leads to a small advantage
in terms of dereverberation performance of the MWF, as measured by objective
performance measures, compared to the algorithm in [16].

[C] �Maximum likelihood PSD estimation for speech enhancement in
reverberation and noise�

In Paper C, we propose a novel algorithm that is a generalization of the al-
gorithm from Paper A for acoustic scenarios that, besides target speech and
reverberation, also include additive noise. This results in a more realistic signal
model, but it necessitates derivation of a novel PSD estimator. The resulting
estimator is not of closed form and results in a higher overall computational
complexity of the proposed algorithm compared to the algorithms in Paper A

26



3. Summary of contributions

and [16].
Through two numerical experiments we show that for arrays of more than

two microphones: (a) the proposed PSD estimator achieves higher estimation
accuracy than the estimator used in [16], and (b) that the speech derever-
beration performance of the MWF using the proposed estimator is somewhat
higher than that obtained using the algorithm form [16]. As in the noise-free
scenario considered in Paper B, the two algorithms are identical when only two
microphones are in use. In addition to numerical simulations, we conduct a
speech intelligibility test with 20 subjects. The results indicate similar speech
intelligibility improvements over the unprocessed signal when using either of
the algorithms.

Paper C builds upon a conference paper [81] entitled �Maximum likelihood
PSD estimation for speech enhancement in reverberant and noisy conditions�
which was presented at the IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP) in 2016. This preliminary investigation lacks
the PSD estimation accuracy comparison and the objective evaluation of the
algorithms' performance includes fewer performance measures than in Paper C.
Moreover, the speech intelligibility results presented in [81] are based on only
the �rst 10 subjects of the listening test.

[D] �Multi-channel Wiener �lter for speech dereverberation in hear-
ing aids � sensitivity to DoA errors�

Paper D is a preliminary study of the robustness of the algorithm proposed
in Paper A to erroneous target DoA assumption. Four di�erent microphone
array con�gurations are compared in terms of their absolute performance and
robustness to DoA errors. Binaural con�gurations of the algorithms are shown
to be capable of higher dereverberation performance but also that they are
much more sensitive to the DoA error. We explain this through an analysis
of directional sensitivity patterns of the beamforming part of the MWF in the
four microphone array con�gurations.

[E] �Contralateral microphones in multi-channel Wiener �lters for
hearing aids � bene�ts and tradeo�s�

Paper E is an extension of the study in Paper D for acoustic scenarios that in-
clude additive noise (besides target speech and reverberation). As in Paper D,
we test and compare four microphone array con�gurations in terms of their ab-
solute performance and robustness to DoA errors. The experiment in this paper
includes a more comprehensive set of true and assumed DoAs than in Paper D,
which provides additional insights into the relative performance of di�erent mi-
crophone con�gurations. Besides the numerical simulations with instrumental
performance measures, we conduct a speech intelligibility test with 20 subjects.
In the test included are two microphone array con�gurations of the MWF from
Paper C: a bilateral one (two hearing aids working independently) and a bin-
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aural one (two interconnected hearing aids operating on microphone signals
from both sides). The results indicate that under correct DoA assumption, the
binaural con�guration of the MWF results in a statistically signi�cantly better
speech intelligibility than the bilateral con�guration.

To conclude, binaural con�gurations of the algorithm in Paper C can result
in higher dereverberation performance at the cost of much higher sensitivity to
DoA errors.

3.2 Summary of conclusions

The overall conclusions of the work presented in this thesis can be divided into
three themes related to: (a) the MLEs of target speech and late reverberation
PSDs, (b) the use of the MLE-based MWF for speech dereverberation in hear-
ing aids, and (c) the advantages and disadvantages of using speci�c microphone
array con�gurations with MWFs in hearing aids.

The proposed MLEs of target speech and late reverberation PSDs generally
perform well in the acoustic scenarios considered in this thesis. More speci�-
cally, in noise-free, as well as in noisy reverberant single-talker scenarios, the
proposed MLEs performed better than the competing estimator by Braun and
Habets [16]. The proposed estimators also appear to be more robust to vi-
olation of the reverberation isotropy assumption than [16]. However, in the
noisy reverberant speech scenario the estimator proposed in Paper C is more
computationally complex than the estimator from [16].

The use of the proposed MLE-based MWFs for speech dereverberation in
hearing aids appears to be bene�cial, as shown by their high performance in
terms of instrumental measures, as well as speech intelligibility measured in
a listening test with human subjects. Compared to the method in [16], the
proposed algorithm achieves higher FWSegSNR and PESQ scores. However,
the two methods are di�cult to distinguish perceptually and result in similar
speech intelligibility improvement.

Binaural con�gurations of the MWF, while providing increased speech dere-
verberation performance in idealized conditions, are shown to be very sensitive
to errors in the assumed target DoA. Mismatch as small as 15° between the
assumed and the true DoA resulted in a steep decline in the performance scores
of the binaural MWF, whereas the bilateral con�guration performed equally
well for a wider range of DoA errors.

4 Directions for future research

While the proposed MLE-based MWF algorithm generally performed well in
the experimental conditions that were tested in this work, several areas for
further research have been identi�ed. Moreover, new questions arose in the
aftermath of this work.
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The �rst area that we deem worthwhile for future research is the continued
work on extending the signal model used in the proposed algorithms. Explicit
modeling of the target speech early re�ections, uncertainty associated with the
target speech source direction of arrival, competing talkers�all these extensions
would widen the applicability of the algorithm. Extension with an on-line
estimator of the target speech steering vectors appears particularly important
in light of the high sensitivity to steering mismatch, discovered in Papers D
and E.

Due to the low-latency requirement necessary in hearing aid applications, all
results reported in the collected papers were obtained with a relatively short
STFT frame length of 8ms. Consequently, the frequency resolution of the
proposed algorithms was lower than it could have been had a more conventional
frame length of 32ms been used instead. Moreover, the use of short STFT
frames excluded the possibility of incorporating early re�ections into target
steering vectors. Clearly, it is if interest to investigate the performance of the
proposed algorithms for applications where a larger latency can be tolerated,
such that STFT frame lengths in the order of tens of milliseconds could be
used.

The use of spatial processing algorithms in hearing aids, particularly in
binaural hearing aids, a�ects the binaural cues that listeners use for correct
localization and separation of sound sources. Clearly, extending the proposed
algorithms with binaural cue preservation is of high relevance.

In a longer time-frame, we may expect a continued growth of the processing
power of integrated circuits that are used in hearing aids. This may enable
practical use of more advanced signal processing paradigms such as deep neural
networks (DNNs) or other methodologies which rely on more accurate models
of the acoustic scenario, the human listener, or both.
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1. Introduction

Abstract

We propose a multi-channel Wiener �lter for speech dereverberation in hear-
ing aids. The proposed algorithm uses joint maximum likelihood estimation
of the speech and late reverberation spectral variances, under the assumption
that the late reverberant sound �eld is cylindrically isotropic. The dereverbera-
tion performance of the algorithm is evaluated using computer simulations with
realistic hearing aid microphone signals including head-related e�ects. The al-
gorithm is shown to work well with signals reverberated both by synthetic and
by measured room impulse responses, achieving improvements in the order of
0.5 PESQ points and 5 dB frequency-weighted segmental SNR.

1 Introduction

Hearing impaired listeners experience increased di�culty in understanding
speech in reverberant and noisy conditions [1]. In order to enable them to
attain the same speech intelligibility as normal hearing persons, various sig-
nal enhancement algorithms are used in Hearing Aids (HAs). Both single-
and multi-microphone (spatial) methods are commonly used in HAs, notably
spectral modi�cation and beamforming [2].

The Multi-channel Wiener Filter (MWF) [3] is a method which currently
receives a lot of attention in the research community, e.g. [4], [5], [6]. Imple-
mentation of the MWF requires knowledge of the inter-microphone covariance
matrices of the target signal (i.e. speech) and of the interference (e.g. ambient
noise or reverberation). Traditionally a Voice Activity Detector (VAD) is used
to enable noise covariance matrix estimation during speech pauses, e.g. [6]. This
approach is based on the assumption that the interference covariance matrix is
constant during speech presence. In reverberant conditions this assumption is
not valid, which necessitates on-line estimation of the reverberation covariance
matrix.

In the present study, we propose an MWF algorithm for speech dereverber-
ation, which jointly estimates the target and interference spectral variances also
during speech presence. The algorithm uses a Maximum Likelihood Estimation
(MLE) method presented �rst in [7] which is novel in the speech dereverber-
ation context. We assume a cylindrically isotropic spatial distribution of the
late reverberation and a known speaker direction. Therefore, the structure
of the inter-microphone covariance matrices of the speech and reverberation
is known and only the time-varying spectral variances (the scaling factors of
these matrices) are estimated in the MLE framework.

The proposed algorithm bears some similarities to the one presented in
[4]. In both methods an isotropic spatial distribution of the late reverberant
�eld is assumed and the spectral variances of the interference are estimated
regardless of speech presence. However, while [4] uses intermediate �reference
signals� (based on [5]) to estimate the reverberation variances, we compute
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these estimates directly form the input covariance matrix (based on [7]). The
method presented here is designed for and evaluated in a hearing aid usage
scenario and with real room impulse responses, whereas in [4], microphones
were assumed to reside in free �eld and reverberation was simulated using an
image model of a rectangular room.

2 Signal model and assumptions

The proposed algorithm operates on M microphone signals represented as
complex-valued Short Time Fourier Transform (STFT) coe�cients. They are
collected in a vector

y(k, n) = [y1(k, n) . . . ym(k, n) . . . yM (k, n)]T , (A.1)

where ym(k, n) is the STFT coe�cient of the m-th microphone signal in the
k-th frequency sub-band and the n-th time frame. Based on the assumption
of signal independence between sub-bands, we will operate on them separately.
This allows us to omit the frequency index k in the following description without
loss of generality.

The input signal y(n) is assumed to be the sum of the target speech compo-
nent s(n) and an interference component v(n). Both s(n) and v(n) are de�ned
similarly to (A.1). The interference v(n) is assumed to be late reverberation,
ambient noise, or a sum of both. In either case, it is assumed to be uncorrelated
to the target speech component s(n). This allows us to model the covariance
matrix of the input as the sum of the covariance matrices of the two signal
components:

Φy(n) = E{y(n)yH(n)}
= E{s(n)sH(n)}+ E{v(n)vH(n)}
= Φs(n) + Φv(n). (A.2)

We model the speaker as a point source and therefore the speech component
can be expressed as

s(n) = s(n)d. (A.3)

The scalar signal s(n) represents the speech signal at a certain reference po-
sition, commonly chosen as one of the microphones. Elements of the vector
d represent relative transfer functions of the speech signal between the refer-
ence position and all microphones of the array. The vector d is assumed to be
known, and depends primarily on the microphone array geometry and on the
direction of the speech source. In the beamforming context, we will refer to d
as a steering vector.

We employ an isotropic model of the interference v(n). Taking this and
(A.3) into account, (A.2) can be rewritten as

Φy(n) = φs(n)ddH︸ ︷︷ ︸
Φs(n)

+φv(n)Γiso︸ ︷︷ ︸
Φv(n)

, (A.4)
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where φs(n) and φv(n) are, respectively, (scalar) spectral variances of the
speech and of the interference component of the reference microphone signal.
Because, in general, the speech and noise processes are non-stationary, their
variances φs(n) and φv(n) are time-varying. The matrix Γiso is the normalized
covariance matrix of the isotropic sound �eld, and similarly to d, is assumed
to be known and constant.

2.1 Discussion of validity of assumptions

The intended application of the proposed algorithm is intelligibility improve-
ment of reverberant and/or noisy speech in HAs. Assumptions with regard to
the employed signal model are made to capture aspects of the actual physical
signals which are most relevant to this particular task and application.

In reverberant conditions, speech intelligibility is a�ected primarily by late
reverberation, whereas early re�ections are believed to be bene�cial [8]. For
that reason, the model of the interference was chosen to describe properties of
speci�cally the late part of the reverberation.

In [9], the spatial energy distribution of reverberant sound �elds was studied.
It was shown that all spatial directions are represented in the late reverberant
energy, but only few directions are in the energy of early re�ections. This
supports our assumption that the late reverberant �eld is isotropic.

An isotropic model of the ambient noise is also ecologically justi�ed, espe-
cially in applications where there is no prior knowledge on the spatial distri-
bution of the noise, e.g. in hearing aids. The spatial probability distribution
of the noise impinging on the microphone array can reasonably be assumed
uniform, i.e. isotropic.

The assumption of d being known is reasonable in hearing aid design. It is
supported by the fact that, in most situations, the hearing aid user is looking
at the person he is speaking with (e.g. to facilitate lip reading). Hence, d
corresponds to a target source frontal to the HA user.

In the present work, the interference v(n) is modeled as independent, and
therefore uncorrelated with the speech signal s(n). This assumption is natural
for the ambient noise but is questionable with regard to the reverberation. Our
rationale is that the late part of the room impulse responses is considerably
disrupted by thermal �uctuations [10] and small movements of the source and
microphone array [11]. These instabilities are unavoidable in real use of a HA
and e�ectively decorrelate the late reverberation from the direct sound.

3 Multi-channel Wiener �lter

It is well known that the MWF is the Linear Minimum Mean Square Error
(LMMSE) solution to the problem of signal estimation in a setup presented in
Section 2, [3]. It is also well known that the MWF can be factorized into a
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Fig. A.1: Block diagram of the proposed algorithm.

Minimum Variance Distortionless Response (MVDR) beamformer and a Single
Channel (SC) Wiener �lter [3].

The structure of the proposed MWF-type algorithm is depicted in Fig.A.1.
The signal resulting from the MWF is the LMMSE estimate of the target speech
signal at the reference position and may be written as

ŝ(n) = wH
mwf(n)y(n), where (A.5a)

wmwf(n) =

[
φso(n)

φso(n) + φvo(n)

]
︸ ︷︷ ︸

gsc(n)

Γ−1isod

dHΓ−1isod︸ ︷︷ ︸
wmvdr

. (A.5b)

In (A.5a�A.5b) the vector of MVDR beamformer coe�cients and the SC
Wiener �lter gain have been denoted as wmvdr and gsc(n), respectively. φso(n)
and φvo(n) denote the spectral variances of the speech and the interference at
the output of the MVDR beamformer. They can be expressed as

φso(n) = φs(n), (A.6a)

φvo(n) = φv(n)(dHΓ−1isod)−1. (A.6b)

The MVDR beamformer does not distort the variance of the speech (A.6a),
but the variance of the interference has to be corrected by the beamformer
suppression factor (A.6b) [3]. It is important to note that wmvdr depends only
on Γiso and d. Because we assume that these are known and constant, the
beamformer coe�cients wmvdr can be calculated beforehand.

The SCWiener �lter gain gsc(n) is time-varying and depends on the spectral
variances φs(n) and φv(n). They are unknown and have to be estimated from
the noisy/reverberant observations y(n) for each time frame and frequency bin.
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Several methods exist for estimating φs(n) and φv(n), e.g. [4], [5], [7]. The
proposed algorithm uses MLEs which were derived by Ye and DeGroat [7] for
a similar signal model to the one employed in the present study, although in a
non-acoustic context. These MLEs may be expressed as

φ̂v(n) =
1

M − 1
tr
{(

I− dwH
mvdr

)
Φ̂y(n) Γ−1iso

}
, (A.7a)

φ̂s(n) = wH
mvdr

(
Φ̂y(n)− φ̂v(n) Γiso

)
wmvdr, (A.7b)

where Φ̂y(n) is the estimate of the covariance matrix of the input signal, and
tr{·} denotes the matrix trace operator.

4 Experimental setup

In order to evaluate the performance of the proposed algorithm, a series of
computer simulations was conducted. Technical details on these simulations
are described in Sections 4.1�4.2 and the evaluation results are discussed in
Section 5

4.1 Speech signals and room impulse responses

Recorded speech utterances of male and female native English speakers were ob-
tained from the TIMIT database [12]. Individual utterances were concatenated
into longer sequences and arti�cially reverberated by convolving them with ei-
ther synthetic or measured multi-channel Room Impulse Responses (RIRs).
Each RIR consisted of 4 channels corresponding to the microphones of a pair
of 2-microphone Oticon Epoq Behind-The-Ear (BTE) HAs placed on the ears
of a Brüel&Kjær Head And Torso Simulator (HATS).

Five RIRs were recorded in real rooms with the source of the probe sound
placed in front of the HATS at a distance between 0.9m and 2m. The rever-
beration time T60, the clarity index C50 and the Direct-to-Reverberation Ratio
(DRR) calculated from these RIRs are given in the upper part of Table A.1.
In none of the used rooms the reverberation was truly isotropic and in some of
them it was strongly dominated by certain directions (especially in the bath-
room and auditorium). In that sense, the used RIRs constitute a fair sample
of reverberant conditions a hearing aid user might encounter.

A sixth, synthetic RIR was designed to measure the performance of the
proposed algorithm in conditions completely matching the underlying assump-
tions on reverberation isotropy. The reverberation tail of the synthetic RIR
was modeled by a sum of 72 exponentially decaying independent white noise
sequences, �ltered through anechoic Head Related Transfer Functions (HRTFs)
measured for 72 evenly spaced positions on the horizontal circle of the HATS.
The direct path component of this RIR was computed from the HRTF of a
frontally placed sound source. The HRTFs were recorded with an equivalent
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Table A.1: Acoustic parameters of the rooms simulated in the evaluation experiment.

Room T60 [s] C50 [dB] DRR [dB]

Bathroom 0.8 5.2 −10.1
Cellar 1.2 5.7 2.2
Staircase 2.3 11.0 4.1
O�ce 1.4 8.8 2.3
Auditorium 1.3 13.4 5.2

Isotropic 1.0 4.7 −0.4

HA/HATS combination as the real RIR measurements. Parameters of the syn-
thesized RIR are given in the last row of Table A.1 (denoted as �Isotropic�).

4.2 Implementation of the proposed algorithm

The simulated reverberant microphone signals were transformed into time-
frequency samples ym(k, n) using an STFT �lterbank. An inverse STFT com-
bined with an overlap-add procedure was used to resynthesize the output signal
(see Fig.A.1). The frame length of the analysis was 8ms with 50% overlap
between consecutive frames. Traditionally, longer frame lengths are used in
speech processing, however, in hearing aids short processing delay is a strong
design constraint. A square root Hann window function was used in both the
analysis and the synthesis �lterbank. A sampling frequency of 16 kHz was used
based on the assumption that frequencies above 8 kHz are negligible in speech
perception.

In order to implement the algorithm with (A.5), (A.6), and (A.7), Φ̂y(n),
d, and Γiso are needed. The input covariance matrix Φ̂y(n) was estimated
from y(n) using recursive averaging with a time constant of 40ms.

For each reverberant condition a di�erent steering vector d was calculated
from the respective RIR truncated to the part containing only the direct path
response. Vectors d were computed by discrete Fourier transformation of the
truncated RIRs after appropriate zero-padding. In the synthetic reverberation
condition, d was computed from the anechoic impulse response of the target
direction.

The normalized covariance matrix of the isotropic sound �eld Γiso was mod-
eled as

Γiso =
1

S

S∑
s=1

dhrtf(αs)d
H
hrtf(αs), (A.8)

where each relative transfer function vector dhrtf(αs) corresponded to the
HRTF measured in an anechoic chamber for one of the azimuth angles
αs ∈ {5◦, 10◦, . . . , 360◦} using the HA/HATS. In this way, Γiso represents
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the frequency-dependent inter-microphone covariance matrix (up to a scalar
multiplication) of a cylindrically isotropic sound �eld.

5 Performance evaluation

The evaluation of the proposed algorithm was based on three objective perfor-
mance measures: Speech-to-Reverberation Modulation energy Ratio (SRMR)
[13], Frequency-Weighted Segmental SNR (FWSegSNR) [14] and Perceptual
Evaluation of Speech Quality (PESQ) [14]. Their Matlab implementations
were obtained from the 2014 Reverb Challenge [15] website. The evaluation
results are presented in Fig.A.2.

The three performance measures were calculated for: the unprocessed rever-
berant signal y1(n), the signal processed by the beamformer only (wH

mvdry(n)),
and the reverberant signal enhanced by the full algorithm (ŝ(n)) (see (A.5)
and Fig.A.1). The results calculated from these signals are denoted as �Input�,
�MVDR�, and �MWF�, respectively. The proposed algorithm was evaluated
for two di�erent microphone array con�gurations: 4-microphone (using both
HAs), and 2-microphone (using only the left HA). In the 4-microphone case
we assume that the signals are communicated between the two hearing aids
instantly and without error.

The reference signal used to compute FWSegSNR and PESQ was the di-
rect path speech signal s(n). In case of the SRMR, which is a non-intrusive
measure, the score of the reference signal was also computed and is presented
in Fig.A.2(b).

5.1 Discussion of results

For the simulations with synthetic isotropic reverberation (denoted as �Iso-
tropic�), the proposed algorithm results in an increase of all considered per-
formance measures. Both the MVDR beamformer and the SC Wiener �l-
ter stages of the algorithm contribute positively to that increase. Moreover,
the 4-microphone con�guration results in a better performance than the 2-
microphone con�guration. This is an indication, that the proposed method is
able to use and bene�t from the additional spatial information available in the
4-microphone setup, i.e. when two HAs are used.

In most simulations with RIRs measured in real rooms the increase in the
performance measures was lower than in the synthetic isotropic reverberation
condition. Nonetheless, in some cases the improvement was of similar mag-
nitude (in the cellar, staircase, and o�ce conditions). This suggests that the
isotropic late reverberation model is su�ciently accurate in many real-world re-
verberant environments and can be used to e�ectively dereverberate the signal.
The increase of the performance scores was smaller in simulations using the RIR
of the auditorium, and even negative in the bathroom condition (PESQ and
FWSegSNR). Analysis of these two RIRs revealed that the isotropy assump-
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6. Conclusion

tion was not valid in these situations because of isolated specular re�ections
dominating the reverberation.

The sound quality and speech intelligibility of the processed signals was sub-
jectively assessed through informal listening tests. The perceptual gain from
using the algorithm was most pronounced in the simulated isotropic reverbera-
tion condition. In the cellar, staircase and the o�ce conditions, the speech was
audibly dereverberated and the sound quality was almost una�ected. In the
auditorium and particularly in the bathroom conditions, sound artifacts were
noticeable.

It is relevant to mention, that the algorithm proposed in this paper is also
applicable to target signals other than speech and to interference types other
than reverberation. However, it is a prerequisite that the spatial distribution of
the interference is isotropic or is otherwise known or estimated. Although the
evaluation of the proposed algorithm was conducted in reverberant-only con-
dition, it is reasonable to expect similar performance in an arbitrary isotropic
non-stationary noise.

6 Conclusion

In this paper we have proposed a Multi-channel Wiener Filter (MWF) which
uses joint Maximum Likelihood Estimation (MLE) of speech and reverberation
spectral variances. The MLE method was adopted from the work of Ye and
DeGroat [7]. The proposed MWF algorithm was implemented and its speech
dereverberation performance for hearing aids was evaluated. It was shown that
the proposed algorithm performs well in both synthetic and realistic reverber-
ation conditions. The performance of the proposed method was best when the
assumption on the interference isotropy was close to valid. In non-isotropic
reverberation/ambient noise conditions on-line estimation of the interference
covariance matrix structure could be used to improve the performance. This is
a topic for future research.
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1. Introduction

Abstract

In this paper we perform an extensive theoretical and experimental comparison
of two recently proposed multi-channel speech dereverberation algorithms. Both
of them are based on the multi-channel Wiener �lter but they use di�erent es-
timators of the speech and reverberation power spectral densities (PSDs). We
�rst derive closed-form expressions for the mean square error (MSE) of both
PSD estimators and then show that one estimator � previously used for speech
dereverberation by the authors � always yields a better MSE. Only in the case
of a two microphone array or for special spatial distributions of the interfer-
ence both estimators yield the same MSE. The theoretically derived MSE values
are in good agreement with numerical simulation results and with instrumental
speech quality measures in a realistic speech dereverberation task for binaural
hearing aids.

1 Introduction

Background noise and reverberation may have a detrimental e�ect on speech
quality and intelligibility [1]. Consequently, speech denoising and dereverbera-
tion algorithms are of interest in many applications, e.g. hearing aids, mobile
phones, etc. Many of these devices contain multiple microphones, which en-
ables the use of spatial �ltering algorithms such as the Multi-channel Wiener
Filter (MWF) [2, 3]. Under a set of commonly made assumptions the MWF is
an optimal estimator of the speech signal in the Minimum Mean Square Error
(MMSE) sense [2]. However, in order to obtain its theoretical performance
the MWF requires knowledge of the (cross-) Power Spectral Density (PSD)
matrices of the target (speech) and interference (noise, reverberation) signal
components. These are usually unknown and have to be estimated from the
noisy and reverberant microphone signals. In practice, the performance of the
resulting MWF depends on the accuracy of the used PSD estimation scheme.

In this paper we compare two multi-channel speech dereverberation algo-
rithms recently proposed in [4] and [5]. Both algorithms are based on the
MWF and use the assumption that the reverberant sound �eld is cylindrically
isotropic. The PSD estimators used in [4] and [5] are both derived using the
Maximum (ML) methodology but use di�erent statistical assumptions, and
therefore yield di�erent formulas and results.

In order to perform a theoretical comparison of the two PSD estimation
schemes we �rst derive analytical expressions for their Mean Square Error
(MSE). This allows us to show that the PSD estimators used in [4] achieve
lower or equal MSE compared to the PSD estimators in [5]. We also derive the
conditions under which the two PSD estimation schemes yield the same MSE.
We verify these theoretical results using numerical simulations.

Finally, we evaluate the speech dereverberation performance of the MWFs
from [4] and [5] in a simulation of binaural hearing aids in realistic rever-
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berant conditions. The results of the experiment show that the algorithm
from [4] outperforms [5] in terms of objective performance measures such as
Frequency-Weighted Segmental SNR (FWSegSNR) [6] and Perceptual Evalu-
ation of Speech Quality (PESQ) [7].

2 Signal model and assumptions

The signal model and assumptions that are used in the speech dereverberation
algorithms proposed in [4] and [5] share many characteristics. Both algorithms
operate on Short Time Fourier Transform (STFT) coe�cients ym(k, n) which
are computed from the time domain signals ym(t) of M microphones:

ym(k, n) =

T−1∑
t=0

ym(t+ nD)w(t)e−2πik
t
T , m = 1, . . . ,M,

where n is the time frame index and k is the frequency bin index. The STFT
order is denoted by T , the �lterbank decimation factor by D, and w(t) is
the analysis window function. The algorithms from [4] and [5] process the
individual frequency bins independently of each other. This enables us to
omit the index k without loss of generality. For notational convenience the
STFT coe�cients corresponding to all microphones are stacked in a vector as:
y(n) = [ y1(n) . . . yM (n) ]T .

The algorithms from [4] and [5] employ an additive model of the reverberant
speech signal:

y(n) = s(n) + v(n)

only in [5]︷ ︸︸ ︷
+ x(n) , (B.1)

where s(n) denotes the direct-path speech component and v(n) denotes the re-
verberation component of the microphone signal. The algorithm from [5] allows
for an additional noise term x(n), whose cross-PSD matrix must be known. In
this study, for mathematical convenience, we assume that this additional noise
component is equal to zero. This corresponds to an assumption that x(n) is
negligible compared to the reverberation component, which may be valid in
some situations. It is assumed that the vectors s(n) and v(n) are statistically
independent across time frames and frequency bins.

The algorithms from [4] and [5] aim to estimate the direct-path speech signal
component s(n) at a certain reference position, e.g. one of the microphones.
Because the speech is assumed to be generated by a point source, the vector
s(n) may be written as the product of s(n) and a vector of Relative Transfer
Functions (RTFs) d [8]:

y(n) = s(n)d + v(n).

The elements of d correspond to the transfer functions of the direct-path speech
from the chosen reference position to all microphones. In [4] and [5] the RTF
vector d is assumed to be known.
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In both algorithms the focus is on reducing the late part of the reverberation,
which is assumed to be uncorrelated with the direct-path speech. Hence, the
cross-PSD matrix of y(n) can be modeled as the sum of the speech and the
reverberation cross-PSD matrices:

Φy(n) = E
[
y(n)yH(n)

]
= Φs(n) + Φv(n).

where E[ ] denotes the expectation operator. Because of the assumption that
the speech is generated by a point source, Φs(n) is modeled as a rank-one
matrix and can be written in terms of the scalar PSD φs(n) of the direct-path
speech at the reference position and the RTF vector d: φs(n)ddH . Similarly,
matrix Φv(n) may be written as a product of the scalar PSD φv(n) of the
reverberation at the reference position, and the cross-PSD matrix Γv of the
reverberation normalized by φv(n):

Φy(n) = φs(n)ddH + φv(n)Γv, (B.2)

Due to the assumption of cylindrical isotropy of the reverberant sound �eld
made in both [4] and [5], the matrix Γv is assumed to be constant, full-rank, and
known. For free-�eld microphone arrays, Γv can even be calculated analytically
using information on microphone array geometry (as in [5]). Alternatively, e.g.
for hearing aid applications, Γv may be estimated from measurements using
the actual microphone array in a (possibly simulated) isotropic sound �eld (as
in [4]). While the vector d and the matrix Γv are assumed to be known and
constant, the PSDs φs(n) and φv(n) are unknown and time-varying because of
the non-stationarity of s(n) and v(n).

3 Multi-channel Wiener �lter

The algorithms from [4] and [5] are both based on the Multi-channel Wiener
Filter (MWF) [2, 3]. It is well-known that the MWF is an MMSE-optimal
estimator of the target speech s(n) if the input signal components s(n) and
v(n) are normally distributed, or alternatively, if the search is limited to linear
estimators. Because of the rank-one assumption on Φs(n), the MWF may be
factorized into an MVDR beamformer wmvdr and a single-channel Wiener �lter
gsc(n) [2]:

ŝ(n) = wH
mwf(n)y(n),

wmwf(n) =

[
φso(n)

φso(n) + φvo(n)

]
︸ ︷︷ ︸

gsc(n)

Γ−1v d

dHΓ−1v d︸ ︷︷ ︸
wmvdr

, (B.3)

where φso(n) and φvo(n) are the PSDs of the direct-path speech and rever-
beration at the output of the MVDR beamformer, i.e.: φso(n) = φs(n), and
φvo(n) = wH

mvdrφv(n)Γvwmvdr. For the signal model described in Sec. 2 the
vector wmvdr is constant and is readily calculated from d and Γv.
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4 Power spectral density estimation

The main di�erence between the algorithms from [4] and [5] is the method
used to estimate the unknown PSDs of the direct-path speech φs(n) and of the
reverberation φv(n). In this section, we brie�y review these two PSD estimation
schemes.

4.1 Algorithm [4] by Kuklasi«ski et al.

The PSD estimators used in [4] are based on the assumption that the STFT co-
e�cients of the signal components are circularly-symmetric complex Gaussian
distributed, i.e.:

s(n) ∼ CN
(
0,Φs(n)

)
, v(n) ∼ CN

(
0,Φv(n)

)
.

The above distributions can be used to construct a likelihood function, compute
its partial derivatives, and ultimately, derive a pair of joint Maximum Likeli-
hood Estimators (MLEs) of φs(n) and φv(n). Several formulations of these
estimators are available in the literature [9, 10], but in [4] the one from [9] has
been used:

φ̂v, [4](n) =
1

M − 1
tr
[(

I− dwH
mvdr

)
Φ̂y(n) Γ−1v

]
, (B.4a)

φ̂s, [4](n) = wH
mvdr

[
Φ̂y(n)− φ̂v, [4](n) Γv

]
wmvdr, (B.4b)

where tr[ ] denotes the matrix trace, Φ̂y(n) denotes the estimate of the cross-
PSD matrix of the input signal:

Φ̂y(n) =
1

L

L−1∑
l=0

y(n− l)yH(n− l), (B.5)

and where the PSDs φs(n) and φv(n) are assumed to be constant across the L
averaged STFT frames.

4.2 Algorithm [5] by Braun and Habets

Similarly to [4], in [5] the reverberation PSD estimator is derived using the
ML methodology. However, the likelihood function used in the derivation is
based on a di�erent statistical assumption than in [4], resulting in a di�erent
estimator.

Speci�cally, the reverberation PSD estimator used in [5] is derived by �rst
de�ning a blocking matrix B∈CM×(M−1) which represents a set of M − 1
target-canceling beamformers. In [5] it is computed according to the method
used in [10]: [

B b
]
= A, A = I− d(dHd)−1dH .
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Next, an error matrix Φerr(n) is de�ned as:

Φerr(n) = ˆ̃Φy(n)− φv(n)Γ̃v, (B.6)

with Γ̃v = BHΓvB and

ˆ̃Φy(n) = BHΦ̂y(n)B. (B.7)

The matrix ˆ̃Φy(n) is the estimate of the cross-PSD matrix of the blocked
input signal ỹ(n) = BHy(n). Because BHs(n) = 0, ˆ̃Φy(n) is equivalently the
estimate of the cross-PSD matrix of the blocked reverberation signal compo-
nent BHv(n) (cf. (B.1)). Hence, the matrix Φerr(n) in (B.6) can be interpreted
as the error between the blocked reverberation cross-PSD matrix φv(n)Γ̃v

(cf. (B.2)) and its estimate ˆ̃Φy(n). In [5] the elements of Φerr(n) are mod-
eled as independent circularly-symmetric complex Gaussian random variables
of equal variance. This assumption is used to construct a likelihood function
from which an MLE of φv(n) is calculated as [5]:

φ̂v, [5](n) = tr
[
Γ̃v

ˆ̃Φy(n)
]
tr
[
Γ̃ 2

v

]−1
. (B.8a)

The corresponding estimator of φs(n) is derived without the use of the ML
methodology, but coincidentally has the same form as the MLE used in [4]
(B.4b):

φ̂s, [5](n) = wH
mvdr

[
Φ̂y(n)− φ̂v, [5](n) Γv

]
wmvdr. (B.8b)

5 Analytical evaluation

In this section we analytically derive the MSE of the reverberation PSD esti-
mator from [5] and compare it to the MSE of the reverberation PSD estimator
from [4]. Di�erences between the direct-path speech PSD estimators from [4]
and [5] are exclusively due to the di�erent reverberation PSD estimators used
in (B.4b) and (B.8b). Therefore, relations between the MSEs of the direct-path
speech PSD estimators are completely determined by and are analogous to the
relations between the MSEs of the reverberation PSD estimators.

We start by noting that the PSD estimators from [4] and [5] are unbiased
(without proof):

E
[
φ̂p,r(n)

]
= φp(n), p ∈ {s, v}, r ∈ {[4], [5]}. (B.9)

Hence, the MSEs of these estimators are identical to their variances.
The variance of the direct-path speech PSD estimator from [4] can be shown

to be equal to the corresponding asymptotic Cramér-Rao Lower Bound (CRLB)
which is equal to [11]:

var
(
φ̂s, [4](n)

)
= CRLB

(
φ̂s(n)

)
= φ2s(n)

1

L

[(
1 + ξ(n)

ξ(n)

)2
+

1

M−1

1

ξ2(n)

]
, (B.10)
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where ξ(n) = φso(n)/φvo(n) is the SNR at the output of the MVDR beam-
former. From [11] it also follows that the variance of the reverberation PSD
estimator from [4] is equal to the respective CRLB, and that this CRLB is
equal to:

var
(
φ̂v, [4](n)

)
= CRLB

(
φ̂v(n)

)
= φ2v(n)

1

L

1

M − 1
. (B.11)

We derive the variance of the reverberation PSD estimator from [5] by
using (B.8a), (B.7) and (B.5) and moving the deterministic factors outside the
variance operator:

var
(
φ̂v, [5](n)

)
= tr

[
Γ̃ 2

v

]−2 1

L
var
(

tr
[
ỹH(n)Γ̃vỹ(n)

])
,

The trace operator inside the variance operator may now be omitted because
its argument has been reduced to a quadratic form (a scalar). The variance of
such quadratic forms in circularly-symmetric complex Gaussian random vectors
is given by [12, p. 513, eq. (15.30)]:

var
(
aHZa

)
= tr

(
ΦaZΦaZ

)
, where a ∼ CN

(
0,Φa

)
. (B.12)

Using (B.12) and the fact that ỹ(n) ∼ CN
(
0, φv(n)Γ̃v

)
, we obtain:

var
(
φ̂v, [5](n)

)
= φ2v(n)

1

L
tr
[
Γ̃ 4

v

]
tr
[
Γ̃ 2

v

]−2
. (B.13)

Before comparing (B.11) and (B.13), we transform (B.13) into a more con-
venient form. Let Γ̃v = VΛVH denote the eigenvalue decomposition of the
positive-de�nite Hermitian matrix Γ̃v, where Λ is a diagonal matrix contain-
ing the M − 1 positive eigenvalues λ1, . . . , λM−1 of Γ̃v. Using the facts that

tr(Γ̃v) =
∑M−1
m=1 λm, Γ̃ p

v = VΛpVH , and de�ning γm = λ2m, (B.13) may be
written as:

var
(
φ̂v, [5](n)

)
= φ2v(n)

1

L

∑M−1
m=1 γ

2
m(∑M−1

m=1 γm
)2 . (B.14)

If we denote the average of the squared eigenvalues γm by γ̄, and the sample
variance of these squared eigenvalues around γ̄ by γ̃2,

γ̄ =
1

M − 1

M−1∑
m=1

γm, γ̃2 =

(
1

M − 1

M−1∑
m=1

γ2m

)
− γ̄2,

then we can rewrite (B.13) as:

var
(
φ̂v, [5](n)

)
= φ2v(n)

1

L

1

M − 1

(
1 +

γ̃2

γ̄2

)
. (B.15)

Comparing (B.15) and (B.11) we can now deduce, that the MSE of φ̂v, [5](n)

can be either greater or equal to the MSE of φ̂v, [4](n) (and the CRLB), but
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can never be lower. The MSEs of these two estimators are equal only when the
eigenvalues of Γ̃v are all equal (i.e. when γ̃2 = 0). Since Γ̃v is Hermitian, it
follows that for this special case to occur, Γ̃v must be a scaled identity matrix
[13]. In all other cases, the reverberation PSD estimator from [4] outperforms
the one from [5]. An important observation is that for M = 2 the matrix Γ̃v

reduces to a scalar, such that γ̃2 is always equal to zero. It follows that for
M = 2 the reverberation PSD estimators from [4] and [5] achieve the same
MSE under all possible conditions.

We can also compute the upper bound of the variance of the reverberation
PSD estimator from [5]. The ratio γ̃2/γ̄2 in (B.15) is maximal when all but one
eigenvalue tend to zero (all energy is concentrated in a single eigenvalue). This
may occur when the interference is dominated by one directional component.
For such interferences the variance (and MSE) of φ̂v, [5](n) equals:

max
Γ̃v

var
(
φ̂v, [5](n)

)
= φ2v(n)

1

L
, (B.16)

i.e. is M − 1 times larger than that of φ̂v, [4](n).

6 Experimental evaluation

We �rst con�rm our theoretical results using a series of numerical simulations
(Sec. 6.1). Additionally, we evaluate the MWF algorithms from [4] and [5]
in a speech dereverberation experiment (Sec. 6.2). In both experiments the
microphone array is composed of a pair of Oticon Epoq behind-the-ear hearing
aids [14], each containing two microphones (i.e.M = 4). We have measured the
RTF vectors d and the matrices Γv in an anechoic chamber with the hearing-
aids placed on a Head And Torso acoustic Simulator (HATS). The reference
position for calculating d and Γv was chosen as one of the microphones (m = 1),
such that the corresponding elements of d and Γv were equal to one. We used
the RTF vector measured for the source position directly in front of the HATS.

6.1 Experiment 1: MSE of PSD estimation

In order to verify the theoretical results of Sec. 5, we have conducted a number
of iterations of a numerical simulation. In each iteration a test signal y(n)
was generated using N = 25000 pseudo-random STFT vectors drawn from a
circularly-symmetric multivariate complex Gaussian distribution. The covari-
ance matrix of this distribution was modeled according to (B.2), using the
measured RTF vector d and matrix Γv for the STFT frequency bin corre-
sponding to 1 kHz. In each iteration φs(n) and φv(n) were set to correspond
to di�erent input SNRs between −15 and 20 dB at the reference microphone.

Next, the PSD estimators from [4] and [5] were used to estimate φs(n) and
φv(n) of the test signals. The averaging length in (B.5) was set to L = 10
frames. Because the true values of the PSDs were known, it was possible to
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Fig. B.1: Normalized MSE of the reverberation and direct-path speech PSD estimators
from [4] and [5], as a function of the input SNR, measured numerically and compared to the
theoretical values. (M = 4, f = 1 kHz, L = 10)

compute the MSE achieved by each of the estimators under each of the simu-
lated SNRs. To facilitate the comparison of the obtained results, we normalized
the measured MSEs by the square of the parameter of interest:

nMSE(φ̂p,r) =
MSE(φ̂p,r)

φ2p
=

1

N−L+1

N∑
n=L

(φ̂p,r(n)− φp)2

φ2p
,

with p and r de�ned as in (B.9).
The results of this experiment are presented in Fig. B.1. For comparison,

the analytically derived nMSEs formulated in (B.10), (B.11), and (B.13) are
also included in the plot. The results of the numerical simulation closely agree
with the theoretical formulas. The MSE achieved by the direct-path speech
PSD estimator from [5] is close to, but greater than the MSE achieved by the
estimator from [4]. It can also be observed that in the particular example of
the simulated binaural hearing aid con�guration of the microphone array, the
advantage of using (B.4a) over (B.8a) for estimating the reverberation PSD is
approximately 5 dB MSE for all input SNRs. Moreover, the nMSE achieved by
the reverberation PSD estimator from [5] is close to the upper bound derived
in (B.16), which for L = 10 equals −10 dB nMSE. This indicates, that the
reverberation PSD estimator from [5] is not optimally suited for the simulated
acoustic scenario.
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Fig. B.2: (a) FWSegSNR and (b) PESQ scores of the algorithms from [4] and [5] (denoted
�MWF�). The scores computed from the unprocessed signal y1(n) (�Input�), and the output
of the MVDR beamformer wH

mvdry(n) (�MVDR�) are also included.

6.2 Experiment 2: speech dereverberation performance

In order to evaluate the in�uence of the di�erent PSD estimators on the MWF
performance, we conducted a second simulation experiment analogous to the
one presented in [4]. In this experiment the test signals were synthesized by
convolving TIMIT speech sentences [15] with six di�erent multi-channel im-
pulse responses. Five of them were measured in real rooms using a similar
microphone array as for measuring d and Γv. The sixth multi-channel impulse
response (denoted �Isotropic�) was synthesized to simulate an ideal cylindrically
isotropic reverberant sound �eld. In the present study, the same room impulse
responses and the same values of the non-critical simulation parameters have
been used as in [4], where their detailed description may be found.

The algorithms from [4] and [5] were used to dereverberate the test signals
and their performance was evaluated using the Frequency-Weighted Segmental
SNR (FWSegSNR) [6] and Perceptual Evaluation of Speech Quality (PESQ) [7]
objective measures. The results of this evaluation are presented in Fig. B.2.
In can be observed, that the lower MSE of the PSD estimators used in the
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algorithm from [4] results in a better speech dereverberation performance as
measured using FWSegSNR and PESQ. Although the di�erence is small in
the �Isotropic� condition, the advantage of using [4] over [5] increases in all
realistic reverberation conditions simulated in this experiment. This suggests,
that the speech dereverberation algorithm proposed in [4] may be more robust
to deviations from the assumed cylindrical isotropy of the reverberation, which
necessarily occur in real rooms.

7 Conclusion

In this paper we have compared two similar speech dereverberation algorithms
proposed in [4] and [5]. Theoretical analysis of the direct-path speech and
reverberation PSD estimators used in both algorithms revealed that for mi-
crophone numbers greater than two, the estimators used in [4] perform better
than the ones used in [5] in almost all conditions. These theoretical results
were con�rmed in a numerical simulation.

The speech dereverberation performance of the algorithms from [4] and [5]
in a four microphone binaural hearing aid con�guration was measured in real-
istic reverberation conditions. It is found that the dereverberation algorithm
from [4] outperforms [5] in terms of the FWSegSNR and PESQ objective per-
formance measures.
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1. Introduction

Abstract

In this contribution we focus on the problem of power spectral density (PSD)
estimation from multiple microphone signals in reverberant and noisy environ-
ments. The PSD estimation method proposed in this paper is based on the
maximum likelihood (ML) methodology. In particular, we derive a novel ML
PSD estimation scheme that is suitable for sound scenes which besides speech
and reverberation consist of an additional noise component whose second-order
statistics are known. The proposed algorithm is shown to outperform an ex-
isting similar algorithm in terms of PSD estimation accuracy. Moreover, it
is shown numerically that the mean squared estimation error achieved by the
proposed method is near the limit set by the corresponding Cramér-Rao lower
bound. The speech dereverberation performance of a multi-channel Wiener �l-
ter (MWF) based on the proposed PSD estimators is measured using several
instrumental measures and is shown to be higher than when the competing es-
timator is used. Moreover, we perform a speech intelligibility test where we
demonstrate that both the proposed and the competing PSD estimators lead to
similar intelligibility improvements.

1 Introduction

Reverberation and additive noise can lower the perceived quality and hinder the
intelligibility of speech. This is particularly a problem in speech communication
scenarios where the microphones of the receiving/recording device are at a
distance from the speaker, e.g. as in hands-free telephony or in hearing aids.
Clearly, noise and reverberation reduction algorithms are of practical interest.

In the literature many types of processing algorithms have been proposed for
dereverberation and/or noise reduction in speech signals. Because in most sce-
narios both noise and reverberation are present, we focus on algorithms that can
be used to jointly reduce these two types of interference (as opposed to only one
of them). Moreover, we speci�cally focus on reduction of the late reverberation
because it is believed to be particularly detrimental for speech intelligibility [1].
Following [2], speech dereverberation algorithms can be broadly divided into
spectral enhancement, spatial processing, and system identi�cation/inversion
algorithms. The latter class of algorithms is generally more appropriate for
dereverberation than for noise reduction (with some exceptions, e.g.: [3, 4])
and is generally used for equalization of the deterministic part of the impulse
responses, rather than their stochastic (i.e. predominately late) part. On the
other hand, the �rst two classes of algorithms (spectral enhancement and spa-
tial processing) are well suited for noise reduction [5] and for late reverberation
reduction [2]. Hence, we focus on these two types of algorithms.

Most spectral enhancement algorithms are implemented in the spectro-
temporal domain and are usually based on an a priori statistical model of the
signal components (for overviews see [5�7]). For example, in many noise re-
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duction algorithms the noise power is estimated only in some spectro-temporal
regions (e.g. when the signal is dominated by the noise) and is assumed to be
approximately stationary between them. Speech dereverberation algorithms
are mostly targeted at suppression of the late reverberation, which is often
modeled as exponentially decaying and additive (e.g. [8, 9]). These and similar
statistical models are used to estimate the signal-to-interference ratio in indi-
vidual spectro-temporal regions, which are processed accordingly using e.g. the
spectral subtraction rule or the Wiener �lter [8, 9].

Spatial processing algorithms, or beamformers, work by combining the sig-
nals of an array of microphones such that it is sensitive to sounds impinging
from a speci�c direction while suppressing sounds from other directions. Obvi-
ously, beamformers are only e�ective in scenarios where the interference (noise
and/or reverberation) impinges on the microphone array from di�erent direc-
tions than the target speech.

Spectral enhancement and beamforming algorithms are often combined to
create a two-step algorithm where the beamformer is followed by a single chan-
nel spectral enhancement scheme (in this context referred to as the post-�lter).
Among the �rst methods of this type proposed for speech dereverberation and
noise reduction were [10, 11], both composed of a delay-and-sum beamformer
and a coherence-based post-�lter. The beamformers and post-�lters in algo-
rithms proposed more recently are generally based on some optimality criteria,
most notably the linear minimum mean square error (MMSE) resulting in the
multi-channel Wiener �lter (MWF) [12, 13]. The MWF depends on the inter-
microphone covariance matrices of the desired (target speech) and of the inter-
ference (noise and late reverberation) components of the input signal. These
matrices are usually not known but in some scenarios their structure can be
modeled such that only few parameters remain to be estimated. In this paper
we employ a set of assumptions that result in a signal covariance model where
only the power spectral densities (PSDs) of the target speech and of the late
reverberation need to be estimated.

Several methods exist for estimating the speech and the late reverberation
PSDs in the considered setup. Estimators operating on a single microphone
signal are generally considered inferior to PSD estimators using multiple mi-
crophones [14]. In the past, multi-microphone estimators based on the inter-
microphone coherence have been proposed [10, 11]. These estimators generally
are based on the assumption that the late reverberation is uncorrelated be-
tween microphones (invalid e.g. for low frequencies and �nite inter-microphone
distance). More recently, estimators based on optimality criteria have been
proposed, e.g. by Braun and Habets [15], and by the authors of this study [16].
Both these estimators are based on the maximum likelihood (ML) methodol-
ogy, and have been compared with respect to the estimation accuracy in [17].
For the special case where the signals are composed of only speech and rever-
beration, the estimator from [16] has been found to yield superior statistical
performance compared with the estimator from [15]. In fact, in [14] it was
argued that the estimator used in [16] is optimal in the minimum variance
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unbiased (MVU) sense.
A disadvantage of the estimator in [16] compared to the estimator in [15]

is that the former does not take the additive noise into account. On the other
hand, the estimator in [15] is derived using an unrealistic statistical assumption
which results in its decreased estimation performance [17]. In this contribution
we propose a scheme which avoids both these limitations. Speci�cally, we
propose a novel multi-microphone PSD estimator which is approximately ML-
optimal and generalizes the method from [16] to signal models including a
target signal contaminated by late reverberation and additive noise.

This paper is structured as follows. Section 2 presents the signal model and
discusses the employed statistical assumptions. In Section 3 the proposed esti-
mator is derived and several practically relevant special cases are presented for
which the estimator is particularly simple. In Section 4 a detailed experimental
evaluation is performed and the statistical performance of the proposed esti-
mator is compared to the estimator from [15]. It is also shown, that the mean
squared error of the proposed PSD estimator is close to the lowest possible for
unbiased estimators, as set by the Cramér-Rao lower bound (CRLB). In Section
5 the speech dereverberation performance of an MWF based on the two com-
pared PSD estimation methods is evaluated in terms of: the frequency-weighted
segmental signal-to-noise ratio (FWSegSNR) [18], the perceptual evaluation of
speech quality (PESQ) [19] measure, two interference attenuation, and one
speech distortion measure [20, 21]. Lastly, in Section 6, the two variants of the
MWF are evaluated in a speech intelligibility (SI) test with human subjects.
Section 7 concludes the paper.

2 Signal model and statistical assumptions

Consider an array ofM microphones in a reverberant room where a single talker
is active. Speech generated by the talker reaches the microphones not only via
the direct propagation path, but also via multiple re�ections o� the walls and
other surfaces in the room. In most practical situations the microphone signals
are further disrupted by the microphone self-noise and by other additive noise
sources.

For a particular arrangement of a sound source and a sound receiver, acous-
tic properties of a room can be compactly expressed in terms of a room impulse
response (RIR). We adopt an often-made assumption that RIRs are composed
of three distinct parts: the direct path response, the early re�ections, and the
late reverberation. The direct and early components of reverberant speech are
generally considered advantageous for speech intelligibility [1]; hence, we refer
to their sum as the target signal. In speci�c scenarios it might not be desir-
able or practical to include all early re�ections (conventionally the �rst 50ms
of the RIR) in the target signal model. For this reason we de�ne the target
signal as the direct path speech plus those of its early re�ections whose delay
relative to the direct path is less than a certain threshold ts. The remaining
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early re�ections are not accounted for in the signal model. All other compo-
nents of the signal, i.e. the late reverberation, the microphone self-noise, and
other additive noise types, are all considered an interference because of their
detrimental e�ect on speech quality and intelligibility.

Let ym(t) denote the time-domain signal of the m-th microphone of the
array (m = 1, . . . ,M), where t is a discrete time index. Due to the wide-band
and non-stationary nature of the speech, it is often convenient to implement
speech processing algorithms in the spectro-temporal domain. Thus, we express
ym(t) as its short time Fourier transform (STFT) given by:

ym(k, n) =

T−1∑
t=0

ym(t+ nD)w(t)e−2πik
t
T ,

where k is the frequency bin index, n is the time frame index, the STFT
length is denoted by T , the �lterbank decimation factor is denoted by D, and
w(t) is the analysis window function. For notational conciseness we stack the
STFT coe�cients corresponding to all of the microphones in a vector y(k, n) =
[ y1(k, n) . . . yM (k, n) ]T . Furthermore, we assume that y(k, n) is a sum of three
components:

y(k, n) = s(k, n) + r(k, n) + x(k, n), (C.1)

where s(k, n) corresponds to the target signal, r(k, n) corresponds to the late
reverberation, and x(k, n) is the additive noise component (i.e. sum of the
microphone self-noise, ambient noise, and possibly other additive interferences).

We assume that y(k, n) is uncorrelated across frequency bins, which allows
us to omit the frequency bin index k in the subsequent presentation. All pro-
cessing is performed independently in all frequency bins. Moreover, for math-
ematical tractability, we assume that y(n) is uncorrelated across time frames.
In other words, we neglect the in�uence of any existing overlap between the
time frames and any autocorrelation the microphone signals may exhibit for
delays larger than the STFT length. Because reverberant speech signals are
autocorrelated and the time frames do overlap, this assumption is, at best, only
approximately valid. Nevertheless, it is employed in many speech processing
algorithms (e.g. [8, 15, 22]) and the general success of these methods re�ects
that it is a useful working assumption.

Because the additive noise is generated by physical processes independent of
the speech, we assume that x(n) is uncorrelated with s(n) and r(n). Moreover,
we assume that the late reverberation r(n) is uncorrelated with the target signal
s(n). This is an often used assumption (e.g. [8, 9, 15]), which can be justi�ed
by the fact that the late part of RIRs is disturbed by thermal �uctuations of
the air [23] and slight movements of the source and the microphone array [24]
which are unavoidable in practical scenarios. Moreover, in applications where
the STFT length has to be very short (such as in hearing aids), in any time
frame the reverberation can be argued to be correlated mostly with the speech
component of the preceding time frames, but not of the current one.
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The covariance matrix of y(n) is de�ned as:

Φy(n) = E[y(n)yH(n)], (C.2)

where E[·] denotes the expectation operator and (·)H is the Hermitian trans-
pose. Each of the diagonal elements of Φy(n) is equal (up to a normalization
constant) to the power spectral density (PSD) of the respective microphone sig-
nal in the particular frequency bin. Similarly, o�-diagonal elements of Φy(n)
correspond to the cross-PSDs between the respective microphones. Hence, we
refer to Φy(n) as the cross-PSD matrix of y(n). Because we assume that the
signal components are uncorrelated, Φy(n) can be decomposed into a sum of
cross-PSD matrices of the individual signal components. Hence:

Φy(n) = Φs(n) + Φr(n) + Φx(n), (C.3)

where Φs(n), Φr(n), and Φx(n) denote the cross-PSD matrices of s(n), r(n),
and x(n), respectively.

We assume that the STFT coe�cients of the microphone signal and its in-
dividual components are circularly-symmetric complex Gaussian distributed,
e.g: y(n) ∼ NC(0,Φy(n)). While it is known that the STFT coe�cients, par-
ticularly of the speech component, are more accurately modeled using super-
Gaussian distributions (see e.g. [25�27]), the resulting estimators tend to be-
come signi�cantly more complicated (see e.g. [21]). Thus, the Gaussian as-
sumption appears to be a good tradeo� between accuracy and mathematical
tractability.

We model the talker as a single point-source. The direct path and the early
re�ections can be modeled as linear �lters acting on the speech emitted by
the talker. In e�ect, the target signal received by any of the microphones is a
linearly �ltered version of the target signal anywhere else in the room. In order
to use this property, we select a certain reference position (conventionally one
of the microphones) and denote the STFT of the target signal at that position
by s(n) (a scalar). Next, we let d denote a vector of relative transfer functions
(RTFs) [28] of the target signal from the chosen reference position to all of the
microphones (evaluated at the center frequency of the current frequency bin).
For d to represent the RTFs accurately, the early re�ection threshold ts must
be shorter than the STFT length. Using the above de�nitions, we can write:

s(n) = s(n)d. (C.4)

We assume that an estimate of d is available (e.g. because the application
at hand allows its accurate o�-line estimation, or, alternatively, by use of an
on-line estimation scheme such as [29, 30]). Using (C.4) in the de�nition of
Φs(n) results in:

Φs(n) = E[s(n)sH(n)] = φs(n)ddH . (C.5)

It follows that the matrix Φs(n) is rank-one and constant up to a scaling factor
φs(n), which denotes the time-varying PSD of the target speech at the reference
position.
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The late reverberation cross-PSD matrix may be written as:

Φr(n) = φr(n)Γr, (C.6)

where φr(n) denotes the time-varying (scalar) PSD of the late reverberation at
the reference position and Γr is the cross-PSD matrix of the late reverberation
normalized by φr(n). The proposed method is based on the assumption that
Γr is full-rank and known, or, equivalently, that the spatial distribution of the
late reverberation is known. Drawing from statistical models employed in the-
oretical room acoustics (see e.g. [31]) we assume that all directions contribute
equally to the late reverberant sound �eld, i.e. that this sound �eld is isotropic.
In consequence, Γr can be measured a priori as it does not depend on the
position or orientation of the microphone array within the room. For free-�eld
microphone arrays, Γr can even be calculated analytically using information
on the microphone array geometry [32, 33]. For other microphone arrays, Γr

has to be measured or modeled numerically. In many rooms, the �oor and
the ceiling are the most acoustically damped surfaces. In e�ect, the vertical
component of the reverberant sound �eld is damped more than its horizontal
components. In such rooms the reverberation is more accurately modeled as
cylindrically, rather than spherically isotropic.

We assume that the third component of the signal model, x(n), is related
to an additive noise whose statistics are varying slowly�a realistic assumption
if x(n) is used to model the sum of the noise generated by the microphones and
by other sources: ambiance, ventilation equipment, car or airplane cabin noise,
etc. As a consequence, the cross-PSD matrix Φx can be assumed approximately
constant across short spans of time (hence, we omit index n). We assume that
Φx is known or that a reliable estimate thereof is available. In practice, an
estimation scheme such as the multi-microphone speech probability estimator
proposed in [34] could be used to periodically update Φx during time-frequency
regions where speech and late reverberation levels are low compared to that of
the noise (e.g. between speech utterances).

Using (C.5) and (C.6), the overall model for the microphone input cross-
PSD matrix can be re-written as (cf. (C.3)):

Φy(n) = φs(n)ddH + φr(n)Γr + Φx. (C.7)

In this model only the scalar PSDs φs(n) and φr(n) are unknown; their esti-
mation and application to speech dereverberation is the focus of this paper.
To facilitate the derivation of the proposed estimators, we assume that φs(n)
and φr(n) can be considered approximately constant across a certain number
L of consecutive time frames of the STFT. For small L, such that L frames
span less than 50ms, this is analogous to the commonly made assumption of
short-time speech stationarity.

The proposed PSD estimation method is intended for reverberant and noisy
speech signals, and the employed assumptions are motivated by this applica-
tion. However, the proposed algorithm is equally useful for other types of
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signals, provided that the assumptions made are satis�ed, i.e. that the signals
are approximately Gaussian and that their cross-PSD matrix can be modeled
using (C.7).

3 Derivation of the proposed PSD estimators

In this section we derive the proposed maximum likelihood estimators (MLEs)
of φs(n) and φr(n). We begin by formulating a probability density function
(PDF) of the input signal y(n), which we subsequently use to de�ne a joint
likelihood function of φs(n) and φr(n).

Due to the assumptions outlined in Section 2, the input signal vectors y(n)
in any L consecutive time frames can be considered approximately independent
and identically distributed. It follows, that the joint PDF of the signal in these
L time frames can be calculated as the product of the PDFs of y(n) in individual
time frames. Denoting the sample cross-PSD matrix of the input signal as:

Φ̂y(n) =
1

L

L−1∑
l=0

y(n− l)yH(n− l), (C.8)

we can compactly express the joint complex Gaussian PDF of y(n) in L con-
secutive time frames as:

f =
1

πLM |Φy(n)|L
exp
[
−L tr

(
Φ̂y(n)Φ−1y (n)

)]
. (C.9)

This joint PDF depends on φs and φr (through Φy(n), cf. (C.7)), which are
regarded as deterministic but unknown.

The required joint likelihood function is obtained by interpreting the joint
PDF (C.9) as a function of φs and φr. For mathematical convenience we will
be operating on its natural logarithm L = log(f). Omitting one non-essential
term (−LM log(π)), this log-likelihood L can be written as:

L(φs, φr) = −L log |Φy(n)| − L tr
[
Φ̂y(n)Φ−1y (n)

]
, (C.10)

where tr[·] denotes the matrix trace operator. The MLEs of φs(n) and φr(n)
are de�ned as the coordinates of the global maximum of L(φs, φr) and can be
found by solving a two-dimensional optimization problem:(

φ̂s,ML(n), φ̂r,ML(n)
)

= arg max
φs, φr

L(φs, φr), (C.11)

where φ̂s,ML(n) and φ̂r,ML(n) denote the MLEs of φs(n) and φr(n), respectively.
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3.1 Estimator of the target speech PSD

As shown in [35], the MLE of φs(n) can be analytically found by maximizing

the likelihood function (C.10) conditioned on φ̂r,ML(n), i.e. by solving a one-
dimensional optimization problem (cf. (C.11)):

φ̂s,ML(n) = arg max
φs

L(φs; φ̂r,ML).

Let Φ̂v(n) = φ̂r,ML(n)Γr + Φx denote the MLE of the cross-PSD matrix of

the total interference. Then, the MLE φ̂s,ML(n) can be written as [35, Appendix
B]:

φ̂s,ML(n) = wH
MVDR(n)

[
Φ̂y(n)− Φ̂v(n)

]
wMVDR(n), (C.12)

where

wMVDR(n) =
Φ̂−1v (n)d

dHΦ̂−1v (n)d
(C.13)

is the weight vector of a minimum variance distortionless response (MVDR)

beamformer [36]. The MLE (C.12) is a function of (is conditioned on) φ̂r,ML(n)
and can be interpreted as the di�erence between the estimates of the total PSD
and the interference PSD at the output of the MVDR beamformer.

3.2 Estimator of the late reverberation PSD

Because φ̂s,ML(n) and φ̂r,ML(n) are analytically related by (C.12), a one-dimen-

sional, concentrated likelihood function of φr can be de�ned as: L′
(φr) =

L
(
φ̂s,ML(φr), φr

)
. The exact MLE of φr(n) can be found as the argument of

the maximum of L′
(φr) [35]. Unfortunately, for the signal model at hand this

optimization problem is not easily tractable. Instead of resorting to numerical
optimization methods to �nd the maximum of L′

(φr), we propose a simpli�ed
MLE of φr(n) using a modi�ed form of the input signal model.

The modi�cations consist of two steps. First, we pass the input STFT
vector y(n) through a target-blocking matrix B ∈ CM×(M−1) de�ned as [37]:

[B b] = I− d(dHd)−1dH , (C.14)

where B denotes the �rst M − 1 columns and b denotes the last column of the
matrix on the right-hand-side of (C.14). The columns of B can be interpreted
as a set of M − 1 target-canceling beamformers, i.e.: BHs(n) = 0. Hence,
the blocked input signal can be written as: BHy(n) = BHr(n) + BHx(n) (cf.
(C.1)), and its cross-PSD matrix as (cf. (C.2)):

E[BHy(n)yH(n)B] = BHΦy(n)B

= BHΦr(n)B + BHΦxB.
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The second modi�cation of the signal model has the objective of diagonaliz-
ing BHΦxB, i.e. the additive noise component of the blocked input cross-PSD
matrix. To that end, we use a whitening matrix D ∈ C(M−1)×(M−1) and de�ne
it as the Cholesky factor of the inverse of BHΦxB:

DDH = (BHΦxB)−1. (C.15)

It is necessary to assume that BHΦxB is full rank. N.b.: it is su�cient that
real (and, therefore, noisy) microphones are used in the array to guarantee that
BHΦxB is full rank, even if the other noise types contributing to x(n) (e.g.
ambient noise) do not by themselves result in a full rank cross-PSD matrix.

The blocked and whitened signal is given by ỹ(n) = DHBHy(n) and its
cross-PSD matrix can be found as:

Φỹ(n) = DHBHΦy(n)BD = φr(n)Γr̃ + I, (C.16)

where Γr̃ = DHBHΓrBD.
As a result of the described modi�cations, the matrix Φỹ(n) exhibits a use-

ful feature: its eigenvectors are the same as that of the matrix Γr̃. Equivalently,
the eigendecompositions of Φỹ(n) and Γr̃ use the same unitary matrix U:

Φỹ(n) = UΛΦ(n)UH , Γr̃ = UΛΓUH , (C.17)

where the orthonormal columns of U are the eigenvectors, and where ΛΦ(n)
and ΛΓ are diagonal matrices of the eigenvalues of Φỹ(n) and Γr̃, respectively.
Because Γr̃ is constant, so are U and ΛΓ. Due to (C.16), ΛΦ(n) and ΛΓ are
related as:

ΛΦ(n) = φr(n)ΛΓ + I. (C.18)

Equivalently: λΦ,m = φr(n)λΓ,m + 1, where λΦ,m and λΓ,m denote the m-th
eigenvalue of Φỹ(n) and Γr̃, respectively.

Using the blocked and whitened signal model (C.16) we can formulate a
new and simpli�ed log-likelihood of φr. It has a form analogous to (C.10) with
the input cross-PSD matrix and its estimate substituted by their blocked and
whitened counterparts Φỹ(n) and Φ̂ỹ(n):

L
′′
(φr) = −L log |Φỹ(n)| − L tr

[
Φ−1ỹ (n)Φ̂ỹ(n)

]
. (C.19)

The proposed MLE of φr is de�ned as: φ̂r(n) = arg maxφr
L′′

(φr). To �nd

φ̂r(n) we must �rst �nd the derivative of L′′
(φr) with respect to φr. We

compute it by using the fact that for any invertible matrix A(θ) the following
identities hold (A(θ) is a function of θ) [38, 39]:

d log |A(θ)|
dθ

= tr

[
A−1(θ)

dA(θ)

dθ

]
,

d tr
[
A−1(θ)Z

]
dθ

= − tr

[
A−1(θ)

dA(θ)

dθ
A−1(θ)Z

]
.
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We also note that the derivative of Φỹ(n) with respect to φr is equal to Γr̃ (cf.
(C.16)). The (known) result is [35, Eq. (2)]:

dL′′
(φr)

dφr
= −L tr

[
Φ−1ỹ (n)Γr̃ −Φ−1ỹ (n)Γr̃Φ

−1
ỹ (n)Φ̂ỹ(n)

]
. (C.20)

The proposed estimator is found by setting (C.20) to zero and solving for φr.
To do so, we re-write (C.20) using (C.17):

tr
[
Λ−1Φ (n)ΛΓ −Λ−1Φ (n)ΛΓΛ−1Φ (n)UHΦ̂ỹ(n)U

]
= 0.

Exploiting the diagonal structure of the involved matrices and using (C.18),
this can be written as:

M−1∑
m=1

[
λΓ,m

(φrλΓ,m + 1)
− λΓ,m gm(n)

(φrλΓ,m + 1)2

]
= 0, (C.21)

where gm(n) denotes the m-th diagonal element of UHΦ̂ỹ(n)U. It can be seen
that (C.21) is a sum of 2(M − 1) rational terms. By converting all these terms

to a common denominator (
∏M−1
k=1 (φrλΓ,m + 1)2 ), taking only the resulting

numerators into account, and some additional simpli�cations, (C.21) can be
expressed as a sum of M − 1 polynomials in φr:

p(φr) =

M−1∑
m=1

pm(φr), where (C.22)

pm(φr) =

(
φr −

gm(n)− 1

λΓ,m

)
︸ ︷︷ ︸

order 1

M−1, k 6=m∏
k=1

(
φr +

1

λΓ,k

)2

︸ ︷︷ ︸
order 2(M−2)

.

The polynomial p(φr) is of odd order: 2M − 3. Hence, at least 1 and at most
2M −3 real roots of p(φr) exist. When more than one real root of p(φr) exists,
the one yielding the highest value of the likelihood (C.19) must be chosen as

the MLE φ̂r(n).
For convenience, a pseudo-code representation of the algorithm for com-

puting the proposed PSD estimators is provided in Figure C.1. As we show
in Appendix A, usually only one real root of p(φr) exists. Therefore, in most
cases the condition in Figure C.1, line 13 is satis�ed, and it is not necessary to
compute the numerical value of the likelihood (C.19).

In general, numerical methods must be applied to �nd the roots of p(φr)
as no closed-form solution appears obtainable. For microphone arrays with
few microphones, such as often found in hearing aids, this is computationally
trivial. For large microphone arrays, solving (C.22) may become problematic
in applications where computing power is limited.
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1: De�ne: d, Γr, Φx

2: [B b] = I− d(dHd)−1dH (C.14)

3: DDH = (BHΦxB)−1 (C.15)

4: Γr̃ = DHBHΓrBD (C.16)

5: UΛΓUH = Γr̃ such that: UUH = I (C.17)

6: λΓ,m = [ΛΓ]m,m

7: for all n do

8: De�ne: y(n)

9: Update: Φ̂y(n) (C.8)

10: gm(n) = [UHDHBHΦ̂y(n)BDU]m,m

11: De�ne: p(φr) (C.22)

12: P(n) = {φr : p(φr) = 0}
13: if

∣∣P(n)
∣∣ = 1 then

14: φ̂r(n) = {P(n)}
15: else

16: φ̂r(n) = arg maxφr∈P(n) L′′(φr) (C.19)

17: end if

18: Φ̂v(n) = φ̂r(n)Γr + Φx

19: wMVDR(n) = Φ̂−1v (n)d
[
dHΦ̂−1v (n)d

]−1
(C.13)

20: φ̂s(n) = wH
MVDR(n)

[
Φ̂y(n)− Φ̂v(n)

]
wMVDR(n) (C.12)

21: end for

Fig. C.1: A pseudocode representation of the proposed PSD estimation method. The
presented routine is to be applied in all frequency bins (possibly in parallel). The set of
roots of the polynomial p(φr) in the n-th time frame is denoted as P(n), with |P(n)| being
its cardinality (number of elements). Relevant equation numbers are provided for cross-
reference.
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The proposed late reverberation PSD estimator φ̂r(n) is the exact MLE of
φr(n) in the blocked signal domain (C.16) (to within the precision of the root-

�nding algorithm). However, numerical simulations indicated that φ̂r(n) is not

equal to the MLE φ̂r,ML(n) de�ned in (C.11), i.e. in the unmodi�ed signal
domain (C.7). This is due to the loss of information about the signal induced
by the blocking operation. Additionally, the target speech PSD estimator com-
puted according to (C.12) but conditioned on φ̂r(n) instead of φ̂r,ML(n) is not

equal to the exact MLE φ̂s,ML(n). Therefore, both proposed PSD estimators
are only approximations of the true MLE in the unmodi�ed signal domain.
Nevertheless, experimental results reported in Section 4 show that the loss of
the estimation performance is very small.

3.3 Estimator of the late reverberation PSD for x(n) = 0

A special case of the proposed late reverberation PSD estimator can be derived
for signals where x(n) = 0. Because Φx = 0, the whitening operation is
unde�ned and must be omitted. It follows, that (C.16) has to be re-written as
Φỹ(n) = φr(n)Γr̃. Using this in (C.20) a new equation for the MLE is found:

φ−1r (n) tr
[
I−Φ−1ỹ (n)Φ̂ỹ(n)

]
= 0.

Unlike in the general scenario, in this special case a closed form solution for
the MLE exists:

φ̂r|x=0(n) =
1

M − 1
tr
[
Γ−1r̃ Φ̂ỹ(n)

]
. (C.23)

This expression can be recognized as the multi-microphone noise PSD estimator
proposed in [37]. In [14] this estimator has been shown to be minimum variance
unbiased (MVU). Furthermore, (an equivalent form of) the estimator (C.23)
was used for late reverberation PSD estimation in an earlier paper [16] by the
authors of this study.

Although the assumption that x(n) = 0 often does not hold in practical
applications, it is approximately satis�ed in scenarios where the additive noise
x(n) is negligible compared to the late reverberation r(n). In some applications,
the bene�ts of using a closed-form estimator like (C.23) may outweigh the
bene�ts of modeling the signal more accurately.

3.4 Estimator of the late reverberation PSD for M = 2

Another special case may be considered for devices with only two microphones,
such as some hearing aids, smartphones, and laptops. Because the blocking
matrix reduces the dimensionality of the signal by one, all vectors and ma-
trices involved in the estimation of φr(n) degenerate into scalars. Then, the
polynomial (C.22) degenerates into a linear equation which is easily solved:

φ̂r|M=2(n) =
g(n)− 1

λΓ
= (Φ̂ỹ(n)−Φx̃)Γr̃

−1. (C.24)
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squared error

Note that this equation is composed of scalars; we maintain the bold print for
the sake of notation continuity. For M = 2, the proposed late reverberation
PSD estimator (C.24) and the one proposed by Braun and Habets in [15] are
equivalent (can be written as identical equations).

4 Evaluation of the proposed PSD estimator in

terms of the normalized mean squared error

In this section we evaluate the proposed PSD estimator and compare it with
the estimator proposed by Braun and Habets [15]. As the performance metric
we use the normalized mean-squared error (MSE) of estimation de�ned as:

nMSEφs
=
E
[
(φ̂s − φs)2

]
φ2s

, nMSEφr
=
E
[
(φ̂r − φr)2

]
φ2r

. (C.25)

Because the proposed PSD estimators are not of closed form, in general it
is not possible to compute their MSE analytically. Instead, we measure the
MSE achieved by the considered PSD estimators in an experiment involving
a test signal simulating reverberant and noisy speech. Because the proposed
estimators lack closed form, we were only able to numerically verify their unbi-
asedness. Unbiasedness of the estimators from [15] can be shown analytically
(proof omitted). As a result, the MSE of all considered PSD estimators is equal
to their variance.

In the special case when the input signal contains no additive noise com-
ponent (x(n) = 0), the proposed PSD estimators and their MSE can be found
analytically. For this restricted scenario it is also possible to analytically �nd
the MSE of the estimators in [15]. In Appendix B we show that in the noise-free
scenario the MSE of the proposed estimators is always lower than (or equal to)
that of the estimators in [15].

4.1 Experimental setup

In the present experiment, the goal was to measure and compare the per-
formance of the considered estimators in a synthetic scenario where all the
assumptions made in Section 2 are precisely met. Thus, in each iteration of the
experiment a test signal consisting of 25000 STFT sample vectors y(n), inde-
pendently drawn from a circularly-symmetric, multivariate complex Gaussian
distribution, was used. The covariance matrix of that distribution was mod-
eled according to (C.7) (i.e. simulating a cross-PSD matrix of a reverberant
and noisy speech signal) with known and constant φs and φr. Component s(n)
was modeled using a realistic RTF vector d, measured in an anechoic chamber
using microphones of two hearing aids placed on the ears of a head and torso
acoustic simulator (HATS) and a loudspeaker positioned in front of the HATS.
Each of the two behind-the-ear hearing aids had two microphones spaced 1 cm
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apart, resulting in the total number of microphones M = 4. Component r(n)
was modeled using a normalized cross-PSD matrix Γr measured in a simulated
cylindrically isotropic sound �eld using the same microphone array as before.
The cross-PSD matrix of the component x(n) was modeled as a scaled identity
matrix. Both evaluated algorithms were set to estimate the input covariance
matrix (C.8) using the L = 10 most recent time frames.

The simulation experiment was repeated for two di�erent conditions. In
the �rst one, the MSE of the PSD estimation was evaluated as a function
of frequency, and the values of φs and φr were �xed to result in a speech-
to-reverberation ratio (SRR) of 0 dB (averaged over all microphones). In the
second condition, the MSE was evaluated as a function of the SRR and the
frequency was �xed to 1500Hz. In both conditions, the additive noise compo-
nent x(n) was scaled such that its power was 10 dB lower than the power of
the component r(n) (averaged over all microphones).

4.2 Experimental results

Results obtained in the two described conditions are presented in Figures C.2a
and C.2b, respectively. These results are complemented by Cramér-Rao lower
bounds (CRLBs) which set a theoretical bound on the lowest possible variance
any unbiased estimator of φs(n) and φr(n) can achieve in the considered signal
model (C.7). We outline the derivation of the CRLBs in Appendix C.

From Figures C.2a and C.2b it may be observed that in all experimental con-
ditions the target speech and the late reverberation PSD estimators proposed
in this study (labeled as �Proposed�) achieve lower MSE than the corresponding
estimators from [15] (�Braun�). The di�erence between the MSEs yielded by
the late reverberation PSD estimators was substantial. However, the di�erence
between the two target speech PSD estimators was very small in virtually all
conditions. This was expected because the two target speech estimators are
conditioned on di�erent late reverberation PSD estimators but are otherwise
identical [17].

As shown in Figure C.2a, the late reverberation PSD estimator by Braun
and Habets achieved MSEs close to the CRLB only for frequencies below 1 kHz.
For higher frequencies the MSE of estimation was up to 3.5 dB higher than the
CRLB. The proposed late reverberation PSD estimator achieved MSEs close
to the CRLB at all analyzed frequencies and SRRs. It is worth highlighting
that this has been accomplished despite the simpli�cations (C.14)�(C.19) of the
signal model and the likelihood function used in the derivation of the proposed
estimator. It follows, that even the exact MLEs de�ned using the unmodi�ed
signal model (C.11), or any other unbiased estimator based on (C.11), could
at best perform only slightly better that the proposed simpli�ed method. The
steep rise of the MSEs and the CRLBs for low frequencies is due to the wave-
length becoming much larger than the dimensions of the array. This results in
an increasing correlation of the microphone signals, which limits the attainable
gain from averaging between the microphones.
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Fig. C.2: Normalized MSE of PSD estimation of the proposed PSD estimators (Proposed)
and the PSD estimators from [15] (Braun) as a function of: (a) frequency (SRR: 0 dB), (b)
SRR (frequency: 1500Hz). M = 4, L = 10.
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The performance di�erence between the two compared late reverberation
PSD estimators is substantial despite the fact that both estimators are derived
using the maximum likelihood method and are based on similar signal mod-
els. The speci�c cause of this di�erence is the likelihood function used in [15].
This likelihood is based on the assumption that real and imaginary parts of
all entries of the blocked sample cross-PSD matrix BHΦ̂y(n)B are mutually
independent Gaussians with equal variances. However, since sample covariance
matrices are Hermitian, entries that are symmetric with respect to the main
diagonal are complex conjugate pairs (and, hence, not independent). Further-
more, the distribution of diagonal elements of sample covariance matrices has
a positive support (i.e. they are not Gaussian), and, generally, the elements
of sample covariance matrices can have di�erent variances. In the proposed
method the likelihood function (C.19) is de�ned directly on the (modi�ed) in-
put signal STFT vector and a more realistic assumption on its PDF. Despite the
simpli�cations of the signal model, this results in nearly optimal performance.

As expected, and as can be observed in Figure C.2b, negative SRRs resulted
in a much higher target speech PSD estimation MSE (and CRLB) than positive
SRR values. Because both �Braun� and �Proposed� late reverberation PSD
estimators are based on the blocked version of the input signal, their theoretical
performance does not depend on the target speech component and, hence, the
SRR.

5 Evaluation of an MWF based on the proposed

PSD estimator: objective performance mea-

sures

The proposed PSD estimator and the estimator in [15] are both primarily
intended for use with an MWF for joint speech dereverberation and denois-
ing. Therefore, it is of interest to evaluate the in�uence the PSD estimators
have on the performance of the MWF. To this end, we conducted an experi-
ment where realistically simulated reverberant and noisy speech signals were
processed by the MWF based on either the proposed or the competing PSD
estimator from [15]. The speech dereverberation and denoising performance
of the two versions of the MWF was measured and compared in terms of the
frequency-weighted segmental SNR (FWSegSNR) [18], perceptual evaluation
of speech quality (PESQ) [19] measure, mean noise attenuation (NA), mean
reverberation attenuation (RA), and speech-to-speech-distortion ratio (SNR-
S) [20, 21].

5.1 Experimental setup

Both versions of the MWF were implemented as a concatenation of an MVDR
beamformer and a single-channel Wiener post-�lter. The MVDR beamformer
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Table C.1: Basic acoustic parameters of the reverberant conditions

Room T60 [s] C50 [dB] DRR [dB]

Bathroom 0.8 5.2 −10.1
Cellar 1.2 5.7 2.2
Staircase 2.3 11.0 4.1
O�ce 1.4 8.8 2.3
Auditorium 1.3 13.4 5.2

Isotropic 1.0 4.7 −0.4

coe�cients wMVDR(n) were calculated according to (C.13) with the estimate

of the total interference cross-PSD matrix Φ̂v(n) based on φ̂r(n). The output
signal ŝ(n) of the MWF was computed as:

ŝ(n) =

[
φ̂so(n)

φ̂so(n) + φ̂vo(n)

]
wH

MVDR(n)y(n),

where:

φ̂so(n) = φ̂s(n),

φ̂vo(n) = wH
MVDR(n)Φ̂v(n)wMVDR(n),

denote the estimated PSDs of the target speech and the total interference at
the output of the MVDR beamformer, respectively.

Contrary to the experiment in Section 4, in this experiment the goal was
to compare the performance of the estimators in realistic conditions (violating
some of the assumptions made in Section 2) and for a practical application (in
hearing aids). Thus, the microphone signals were generated using real speech
recordings from the TIMIT database [40] and several reverberant and noisy
conditions based on real room impulse responses (RIRs) and simulated micro-
phone noise. Speci�cally, we used a subset of the TIMIT database containing
17 minutes of male and female speech. TIMIT sentences were convolved with
RIRs measured in �ve real rooms using a microphone array composed of two
behind-the-ear hearing aids on the HATS (same as described in Section 4).
The reverberation time T60, clarity index C50, and the direct-to-reverberation
ratio (DRR) of these �ve RIRs are presented in Table C.1. The rooms are
denoted by their function as: �Bathroom�, �Cellar�, �Staircase�, �O�ce�, and
�Auditorium�, and represent a wide range of acoustic conditions a hearing aid
user might encounter. A sixth, synthetic impulse response, where the rever-
beration was modeled as perfectly cylindrically isotropic was also used and is
denoted as �Isotropic�. To simulate the electrical noise that is generated by
real-world microphones, spatially white and spectrally pink noise was added to
the convolved speech signals. The simulations were repeated for two levels of
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that noise, such that at the frequency of 1 kHz the noise PSD was either 20 dB
or 30 dB lower than the PSD of the target speech material.

The sampling frequency of the simulated time-domain signals was 16 kHz
and the STFT length was set to 8ms (T = 128 samples). This ensured a pro-
cessing delay of the MWF shorter than 10ms, which is a requirement for hearing
aid systems. A square root Hann window with 50% overlap between frames was
used in the analysis �lterbank and in the overlap-add inverse STFT procedure
used for re-synthesis of the output signal. The input cross-PSD matrix Φ̂y(n)
was estimated using recursive averaging (equivalent to exponential weighting)
with a time constant of 50ms (instead of the moving average smoothing used
in (C.8)). For processing of the signals simulated using each of the six impulse
responses, the MWF algorithm and the PSD estimators were implemented us-
ing RTF vectors d extracted from the �rst 2.5ms of the RIR in question (i.e.
ts = 40 samples). For the RIRs used in the experiment this resulted in d being
based solely on the direct path response. It follows that the early re�ections
(particularly strong in the �Bathroom� condition) were left unaccounted for in
the assumed signal model. This resulted in a realistic mismatch between the
used RTF vector d and the actual RTF of the target speech component in
the simulated signals. Moreover, because d depended only on the direction of
the target source, the assumption that d is known became more realistic. The
normalized cross-PSD matrix Γr of the cylindrically isotropic sound �eld was
measured a priori in a simulated cylindrically isotropic sound �eld using the
same microphone array as used for measuring the RIRs. In none of the �ve
real rooms, the late reverberation was truly isotropic which, again, resulted in
a realistic mismatch between the assumed model and the actual structure of
the signal. Only in the �Isotropic� condition the model of the target signal and
of the reverberation component was accurate.

5.2 Experimental results

The results of the experiment are presented in Figure C.3. Performance scores
obtained by using the MWF based on the proposed PSD estimator (�Proposed�)
and on the estimator proposed in [15] (�Braun�) are included along the scores
obtained by using only the MVDR part of the two MWFs (�MVDR�). The
scores calculated from the unprocessed input signal (�Input�) are included for
reference. The relative performance between the proposed and the competing
MWFs and MVDRs was the same for the higher and the lower microphone
noise level setting. Thus, we show only the results obtained for the −30 dB
setting, which better corresponds to the typical microphone noise and speech
levels encountered in practice.

In all simulated conditions, both versions of the MWF and the MVDR
beamformer succeeded in improving FWSegSNR and PESQ. The RA was also
always positive, indicating algorithms' e�ectiveness in reducing the reverber-
ation. However, the NA scores were exclusively negative, indicating that on
average all algorithms ampli�ed the noise. This was expected because the NA
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Fig. C.3: (a) FWSegSNR, (b) PESQ, (c) RA, (d) NA, and (e) SNR-S scores obtained
by using MWFs and MVDR beamformers based on the PSD estimators from [15] (denoted
�Braun�) and the proposed estimators (denoted �Proposed�). Scores obtained from the
unprocessed input signal (�Input�) are also included.

87



Paper C.

measure (as well as RA and SNR-S) only accounts for those signal segments
where the target speech component is active (see [21]). Because the MVDR
beamformer adapts to jointly suppress the noise and the late reverberation, it
was expected that during speech and, hence, reverberation activity the noise
component will have negligible impact on the MVDR coe�cients. Naturally,
during speech and reverberation absence the MVDR beamformers adapted to
primarily reduce the noise component.

The total improvement of the FWSegSNR and PESQ over the unprocessed
signal was greatest in the �Isotropic� and lowest in the �Bathroom� condition.
This di�erence can be explained by the fact that in the �Isotropic� condition Γr

and d accurately characterized the actual input signal whereas in the �Bath-
room� condition the input signal did not match the assumed model. Prominent
early re�ections present in the �Bathroom� condition were unaccounted for and
resulted in substantial leakage of the early speech component into the output
of the blocking matrix. This lead to an overestimation of the late reverberation
PSD and, ultimately, over-suppression and distortion of the target speech in
the post-�lter (note the very high RA and very low SNR-S in this condition).

The di�erences in the performance scores obtained by using the MVDR
beamformers based on �Braun� and �Proposed� PSD estimators were very small.
Although the performance di�erence between the MWFs was somewhat big-
ger, it was still only moderately large. For example in the �Isotropic� condition
�Proposed� MWF performed only marginally better than �Braun�. In the re-
maining conditions the di�erence is larger and the proposed method appears to
systematically perform better than �Braun�. This suggests that the proposed
estimators are more robust to the mismatch between the signal model and its
actual structure than the estimators from [15]. The SNR-S measure indicated
stronger speech distortion when using the proposed PSD estimator. While be-
ing a clear disadvantage, low SNR-S scores are counterbalanced by higher RA
and NA values.

Informal listening tests indicated similar trends as the objective perfor-
mance measures. In all simulated conditions, the MWFs resulted in a decrease
of the perceived reverberation and noise strength. The MVDR beamformers
also reduced the amount of perceived interference, but to a smaller degree. Dif-
ferences between �Braun� and �Proposed� MWFs were barely perceivable; only
in speci�c signal scenarios a small increase in the audibility of musical noise
could be noticed in the �Braun� MWF output. This was expected because the
PSD estimators from [15] have higher MSE.

We close this section by noting that (when implemented in Matlab) the
proposed algorithm resulted in computation times roughly 1.7 times longer
than the algorithm from [15].
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6 Evaluation of an MWF based on the proposed

PSD estimator: speech intelligibility improve-

ment

In addition to the two experiments with technical/objective performance mea-
sures in Sections 4 and 5, we conducted a speech intelligibility (SI) test with
human subjects. Dantale II [41] sentences were presented via Sennheiser HD280
pro headphones to 20 subjects, who were requested to select the words they
heard from an on-screen list of options [42].

6.1 Experimental setup

Stimuli were constructed as follows. The Dantale II sentences were concate-
nated with 2 s of silence before and after the utterance and underwent the same
realistic reverberation simulation as in the �Cellar� condition in Section 5, cor-
responding to a frontal position of the target source at a distance of 2m. Since
the SI in this condition was close to 100%, speech-like interference consisting
of randomly shifted and superimposed copies of the international speech test
signal (ISTS) [43] was added to the reverberated Dantale II sentences. The
interferer signals were convolved with 5 RIRs recorded in the same room as
the target RIR but with the sound source positioned at 90°, 135°, 180°, −135°,
and at −90° azimuth angle, at 2m distance. Each of the simulated babble
talkers radiated the same power as the target source. Di�erent levels of SI
were achieved by manipulating the DRR of the the target source RIR. This
was done by attenuating the direct part of the target speech while keeping the
rest of the signal intact. In this way the DRR was o�set by 0, −4, −8, and
−12 dB from its original value of 2.2 dB (cf. Table C.1).

The RTF vector d and the cross-PSD matrix Γr were obtained in the same
way, and the simulated microphone signals were processed using the same al-
gorithms as in Section 5. The additional noise cross-PSD matrix Φx was es-
timated from the �rst 2 s of each stimuli, which was known to contain only
the reverberated ISTS babble and the simulated microphone noise. In order to
provide correct binaural cues of the target speech, signals presented to each of
the subjects' ears were processed by separate instances of the algorithms, each
using the front microphone of the corresponding hearing aid as the reference
position. In the unprocessed condition (�Input�) the signals of the left and right
reference microphones were presented to the corresponding ears of the subject.
This allowed the subjects to localize the target and the ISTS interferers at their
original (simulated) positions and bene�t from the binaural advantage [44]. In
the processed conditions this was not possible, as all components of the en-
hanced signals were perceived as coming from the target direction (a known
side-e�ect of using binaural beamformers [45]). To each of the experimental
conditions �ve Dantale II sentences were randomly assigned (independently for
each subject). The sentences were processed and then presented to subjects in
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a randomized order.

6.2 Experimental results

The word intelligibility obtained in each of the processing conditions was cal-
culated as the percentage of words identi�ed correctly by the subjects and is
plotted in Fig. C.4 as a function of the DRR o�set. In order to interpret these re-
sults, we performed a two-way repeated measures ANOVA procedure [46] on the
rationalized arcsine-corrected [47] subject mean word intelligibility scores. The
e�ect of the processing type (F4,76 = 232.6), the DRR o�set (F3,57 = 383.8),
and the interaction term (F12,228 = 5.0) on the measured intelligibility were
all found to be signi�cant at the p < 0.001 level. Pairwise comparisons of
the marginal means revealed that: a) each of the algorithms signi�cantly im-
proved the SI over the �Input�, b) the MWFs outperformed their corresponding
MVDR beamformers, and additionally, c) the �Proposed MWF� outperformed
the �Braun MVDR�. The familywise type I error rate was limited to 1% using
Bonferroni correction.

The lack of signi�cant di�erences between the SI obtained with the proposed
and the competing PSD estimators was somewhat expected, given the minute
instrumental performance di�erences of the two MWFs and MVDR beamform-
ers obtained in Section 5. On the other hand, signi�cant improvement of SI
resulting from the post-�lters of the two MWFs is apparently in contrast with
the general understanding that single channel spectral �lters usually fail to
increase SI [48]. The fact that the post-�lters of the two evaluated MWFs suc-
ceeded in improving SI can be explained by the fact that they were computed
using information from the multi-microphone signal (contrary to the single
channel schemes discussed in [48]).

7 Conclusion

In this paper we have proposed a pair of novel ML-based speech and late
reverberation PSD estimators. The proposed method models the interference as
consisting of late reverberation and additive noise; in this sense it can be seen as
an extension of the method in [16] which only considers the late reverberation.
We have numerically demonstrated that the proposed estimator yields lower
mean squared error (MSE) of PSD estimation than the method in [15], and
that this MSE is very close to the corresponding Cramér-Rao lower bound.

In an experiment with realistically simulated reverberation, we have com-
pared speech dereverberation performance of an MWF based on the proposed
estimator and on the estimator from [15]. The proposed estimator generally
resulted in higher FWSegSNR, PESQ, RA, and NA scores than the estimator
from [15]. However, the SNR-S indicated stronger speech distortion. In terms
of speech intelligibility, the MWFs based on both PSD estimators provided sta-
tistically signi�cant improvements over the unprocessed signal, but were not
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Fig. C.4: Word intelligibility scores obtained in the listening test with the RIR from the
�Cellar� condition and ISTS interferers, averaged across 20 subjects.

signi�cantly di�erent from each other. The output of both MWFs was sta-
tistically signi�cantly more intelligible than the output of the corresponding
MVDR beamformers.

Evaluation of the proposed algorithm in environments which more severely
violate the assumptions made in this paper is an area for future work. In an
ongoing study, we evaluate the proposed algorithm's robustness to erroneous
estimates of the direction of the target speech arrival. Preliminary results for
signals without the noise component have already been published in [49].
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A Properties of the proposed late reverberation

PSD estimator

In the following, we show that in the majority of practical cases the polynomial
equation (C.22) (repeated below for convenience) has exactly one real-valued
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root and that this root is non-negative. Due to this property, the proposed
MLE of φr(n) can be found more easily, as the likelihood (C.19) does not need
to be calculated in order to determine which of the roots of (C.22) corresponds
to the MLE of φr(n).

p(φr) =

M−1∑
m=1

pm(φr), where (C.22)

pm(φr) =

(
φr −

gm(n)− 1

λΓ,m

)
︸ ︷︷ ︸

order 1

M−1, k 6=m∏
k=1

(
φr +

1

λΓ,k

)2

︸ ︷︷ ︸
order 2(M−2)

.

We begin by noting that the order of the polynomial p(φr) depends linearly
on the number of microphones M and it is equal to 2M − 3. Because this is
always an odd number, at least one root of p(φr) is real. This means that for
all possible input signals the proposed method will return a result.

The polynomial p(φr) is a sum of M − 1 polynomials pm(φr), and each
pm(φr) has exactly one root of algebraic multiplicity one and exactly M − 2
roots of multiplicity two (cf. (C.22)). The double roots of each pm(φr) are
equal to −λ−1Γ,k. These roots are always negative because Γr̃ is assumed positive-
de�nite, i.e. all of its eigenvalues λΓ,m are strictly positive. The singular root
of each pm(φr) is equal to (gm(n) − 1)λ−1Γ,m, which is non-negative if and only
if gm(n) ≥ 1. This condition is expected to be satis�ed whenever φr(n) ≥ 0,
because (C.17), (C.18):

E[gm(n)] = E
{

[UHΦ̂ỹ(n)U]m,m
}

(C.26)

= φr(n)λΓ,m + 1.

The structure of the component polynomials pm(φr) allows us to draft their
approximate plots in Figure C.5. We note that each of the component polyno-
mials attains a value of zero, but it does not cross it at the double roots. The
M − 1 double roots are repeated between pm(φr) but each of them is absent
from exactly one of the polynomials (cf. (C.22)). It follows that the polyno-
mial p(φr) is strictly negative between −∞ and the lowest of the singular roots.
Analysis of the derivatives and in�ection points of p(φr) leads to a conclusion
that given gm(n) ≥ 1, the graph of the polynomial p(φr) crosses the abscissa
only once at a point between the lowest and the highest of the singular roots
of the component polynomials, i.e. it has exactly one real root and it is non-
negative. The condition gm(n) ≥ 1 can be expected to be satis�ed, because in
reverberant scenarios φr(n) is almost always positive (cf. (C.26)). Our simu-
lations con�rm that; the polynomial (C.22) has a single positive root in over
99% of cases.
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Fig. C.5: Schematic illustration of the polynomial (C.22) (denoted p(φr)) and its M − 1
components pm(φr) for M = 4.

B Theoretical performance of the proposed late

reverberation PSD estimator in noise absence

In this appendix we compare analytical expressions for the mean squared error
(MSE) of the PSD estimators proposed in this study and the PSD estimators
proposed by Braun and Habets in [15]. This comparison does not appear to
be possible in the general case where x(n) 6= 0 because of the lack of a closed-
form solution for the proposed late reverberation PSD estimator. Therefore,
in this appendix we are restricted to the special case where no additive noise
component is present (i.e. x(n) = 0). As shown in Section 3.3, in such a
signal scenario the proposed late reverberation PSD estimator can be written
in closed-form (C.23).

Since the proposed PSD estimators in the special case of x(n) = 0 are
identical to the speech and reverberation PSD estimators proposed by us in [16],
the comparison we make in this appendix is equivalent to the one presented
in [17]. We outline it in the following for completeness.

The target speech PSD estimator proposed by Braun and Habets in [15]
has the same form as the target speech PSD estimator (C.12) proposed in the
present study. The di�erence between the estimators is that they are condi-
tioned on di�erent late reverberation PSD estimates. Hence, it is su�cient to
compare the late reverberation PSD estimators in order to capture the di�er-
ence between the two PSD estimation methods.
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We start the comparison of the late reverberation PSD estimator proposed
by Braun and Habets (denoted φ̂r,Braun(n)) and the one proposed in this study

(denoted φ̂r,Kukl.(n)) by noting that they are both unbiased (proof omitted):

E
[
φ̂r,Kukl.(n)

]
= φr(n), E

[
φ̂r,Braun(n)

]
= φr(n).

Therefore, the MSEs of these estimators are identical to their variances.
The variance of the proposed late reverberation PSD estimator (C.23) can

be shown to be equal to (for proof see [14]):

var
(
φ̂r,Kukl.(n)

)
= φ2r(n)

1

L

1

M − 1
. (C.27)

The variance of the late reverberation PSD estimator proposed by Braun and
Habets [15] has been previously derived in [17] and can be concisely written as:

var
(
φ̂r,Braun(n)

)
= φ2r(n)

1

L

1

M − 1

(
1 +

γ̃2

γ̄2

)
, (C.28)

where γ̃ and γ̄ denote the sample variance and the mean of the squared eigen-
values of the matrix Γř = BHΓrB, respectively.

Comparing (C.28) and (C.27) and using the fact that γ̃ and γ̄ are non-

negative we can conclude that the MSE of φ̂r,Braun(n) can be either greater or

equal to the MSE of φ̂r,Kukl.(n), but can never be lower. The MSEs of these two
estimators are equal only when the eigenvalues of Γř are all equal (i.e. when
γ̃2 = 0). Since Γř is Hermitian, it follows that for this special case to occur,
Γř must be a scaled identity matrix [50]. In all other cases, the proposed late
reverberation PSD estimator has lower MSE than the one from [15].

An important observation is that for M = 2 the matrix Γř reduces to a
scalar, such that γ̃2 is always equal to zero. It follows that for M = 2 the
proposed late reverberation PSD estimator (C.23) and the one proposed by
Braun and Habets [15] achieve the same MSE. In this case they are, in fact,
identical (proof omitted).

C Cramér-Rao lower bounds on PSD estimation

In this appendix we outline the calculation of the Cramér-Rao lower bounds
(CRLBs) included in Figures C.2a and C.2b. By de�nition, the CRLBs are
equal to the elements of the inverse of the Fisher information matrix (FIM).
The i, j-th element of the FIM is de�ned as follows [51]:

Ii,j = −E
[
∂2L(θ)

∂θi ∂θj

]
, (C.29)

where L is the log-likelihood function of the parameter vector θ = [θ1, . . . , θp]
T ,

given the input data. For a p-parameter signal model the FIM is a p× p sym-
metric matrix. For L independent identically distributed circularly-symmetric
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complex Gaussian observations the i, j-th element of the FIM is found as [51]:

Ii,j = L tr

[
Φ−1y

∂Φy

∂θi
Φ−1y

∂Φy

∂θj

]
, (C.30)

where Φy is the cross-PSD matrix of the input signal. Note that because of
the above equation, any invertible linear operation applied to the input signal
vector (such as whitening) does not change the FIM or the CRLB.

In the signal model considered in this study (C.7) there are two unknown
parameters (θ = [φs, φr]

T ); hence, the FIM is a 2 × 2 matrix. Using the log-
likelihood function (C.10) in (C.29), or equivalently the cross-PSD matrix (C.7)
in (C.30) we obtain:

I =

[
Iss Irs
Isr Irr

]
(C.31)

Iss = L tr
[
Φ−1y ddHΦ−1y ddH

]
, (C.32)

Irr = L tr
[
Φ−1y ΓrΦ

−1
y Γr

]
, (C.33)

Irs = Isr = L tr
[
Φ−1y ΓrΦ

−1
y ddH

]
. (C.34)

Similarly to the proposed PSD estimators, the CRLBs do not appear to be
possible to be derived analytically in the general case. For the special case when
x(n) = 0, closed-form expressions for the CRLBs can be derived (see e.g. [14]).
When x(n) 6= 0 the FIM can be inverted numerically and (by de�nition) the
CRLBs are obtained as:

CRLB(φs) = [I−1]1,1, (C.35)

CRLB(φr) = [I−1]2,2. (C.36)

The CRLBs included in Figures C.2a and C.2b were calculated using (C.30)�
(C.36) and normalized by the squared parameter of interest (analogous to the
normalization of MSEs in (C.25)).

References

[1] J. S. Bradley, H. Sato, and M. Picard, �On the importance of early re�ections
for speech in rooms,� J. Acoust. Soc. Am., vol. 113, no. 6, pp. 3233�3244, 2003.

[2] P. A. Naylor, �Introduction,� in Speech Dereverberation, P. A. Naylor and N. D.
Gaubitch, Eds. Springer, 2010.

[3] D. Schmid et al., �Variational bayesian inference for multichannel dereverbera-
tion and noise reduction,� IEEE/ACM Trans. Audio, Speech, Language Process.,
vol. 22, no. 8, pp. 1320�1335, Aug 2014.

[4] I. Kodrasi and S. Doclo, �Joint dereverberation and noise reduction based on
acoustic multichannel equalization,� in 14th Int. Workshop Acoustic Signal En-
hancement (IWAENC), Sept 2014, pp. 139�143.

95



References

[5] J. Benesty, S. Makino, and J. Chen, �Introduction,� in Speech Enhancement,
J. Benesty, S. Makino, and J. Chen, Eds. Berlin, Germany: Springer, 2005,
ch. 1, pp. 1�8.

[6] J. Lim and A. Oppenheim, �Enhancement and bandwidth compression of noisy
speech,� Proc. IEEE, vol. 67, no. 12, pp. 1586�1604, Dec 1979.

[7] P. C. Loizou, Speech Enhancement: Theory and Practice. Taylor & Francis,
2007.

[8] K. Lebart, J. Boucher, and P. Denbigh, �A new method based on spectral sub-
traction for speech dereverberation,� Acta Acustica united with Acustica, vol. 87,
no. 3, pp. 359�366, 2001.

[9] E. A. P. Habets, �Single-channel speech dereverberation based on spectral sub-
traction,� in 15th Annu. Workshop Circuits, Systems, Signal Process., 2004, pp.
250�254.

[10] J. B. Allen, D. A. Berkley, and J. Blauert, �Multimicrophone signal-processing
technique to remove room reverberation from speech signals,� J. Acoust. Soc.
Am., vol. 62, no. 4, pp. 912�915, 1977.

[11] R. Zelinski, �A microphone array with adaptive post-�ltering for noise reduc-
tion in reverberant rooms,� in IEEE Int. Conf. Acoust., Speech, Signal Process.
(ICASSP), vol. 5, Apr 1988, pp. 2578�2581.

[12] S. Doclo et al., �Acoustic beamforming for hearing aid applications,� in Handbook
on Array Processing and Sensor Networks, S. Haykin and K. J. R. Liu, Eds.
Wiley, 2008, pp. 269�302.

[13] ��, �Frequency-domain criterion for the speech distortion weighted multichan-
nel Wiener �lter for robust noise reduction,� Speech Communication, vol. 49, no.
7-8, pp. 636�656, Jul.�Aug. 2007.

[14] J. Jensen and M. S. Pedersen, �Analysis of beamformer-directed single-channel
noise reduction system for hearing aid applications,� in IEEE Int. Conf. Acoust.,
Speech, Signal Process. (ICASSP), Brisbane, Australia, 2015, pp. 5728�5732.

[15] S. Braun and E. A. Habets, �Dereverberation in noisy environments using ref-
erence signals and a maximum likelihood estimator,� in Proc. 21st Eur. Signal
Process. Conf. (EUSIPCO), Marrakech, Morocco, 2013, pp. 1�5.

[16] A. Kuklasi«ski et al., �Maximum likelihood based multi-channel isotropic rever-
beration reduction for hearing aids,� in Proc. 22nd Eur. Signal Process. Conf.
(EUSIPCO), Lisbon, Portugal, 2014, pp. 61�65, (Paper A in this thesis).

[17] ��, �Multi-channel PSD estimators for speech dereverberation � a theoreti-
cal and experimental comparison,� in IEEE Int. Conf. Acoust., Speech, Signal
Process. (ICASSP), Brisbane, Australia, 2015, pp. 91�95, (Paper B in this
thesis).

[18] Y. Hu and P. Loizou, �Evaluation of objective quality measures for speech en-
hancement,� IEEE Trans. Audio, Speech, Language Process., vol. 16, no. 1, pp.
229�238, Jan 2008.

[19] �Perceptual evaluation of speech quality: an objective method for end-to-
end speech quality assessment of narrow-band telephone networks and speech
codecs,� ITU-T Rec. P. 862, 2001.

96



References

[20] S. Gustafsson et al., �A psychoacoustic approach to combined acoustic echo can-
cellation and noise reduction,� IEEE Trans. Speech Audio Process., vol. 10, no. 5,
pp. 245�256, Jul 2002.

[21] J. S. Erkelens et al., �Minimum mean-square error estimation of discrete Fourier
coe�cients with generalized Gamma priors,� IEEE Trans. Audio, Speech, Lan-
guage Process., vol. 15, no. 6, pp. 1741�1752, 2007.

[22] I. Cohen, �Speech enhancement using a noncausal a priori snr estimator,� IEEE
Signal Process. Lett., vol. 11, no. 9, pp. 725�728, 2004.

[23] G. W. Elko, E. Diethorn, and T. Gänsler, �Room impulse response variation
due to temperature �uctuations and its impact on acoustic echo cancellation,�
in Int. Workshop Acoust. Echo Noise Control (IWAENC), Kyoto, Japan, 2003,
pp. 67�70.

[24] J. Mourjopoulos, �On the variation and invertibility of room impulse response
functions,� J. Sound and Vibration, vol. 102, no. 2, pp. 217�228, 1985.

[25] S. Gazor and W. Zhang, �Speech probability distribution,� IEEE Signal Process.
Lett., vol. 10, no. 7, pp. 204�207, JUL 2003.

[26] R. Martin, �Speech enhancement based on minimum mean-square error esti-
mation and supergaussian priors,� IEEE Trans. Speech Audio Process., vol. 13,
no. 5, pp. 845�856, 2005.

[27] J. Jensen, I. Batina, R. C. Hendriks, and R. Heusdens, �A study of the distri-
bution of time-domain speech samples and discrete fourier coe�cients,� in Proc.
SPS-DARTS, vol. 1, 2005, pp. 155�158.

[28] S. Gannot, D. Burshtein, and E. Weinstein, �Signal enhancement using beam-
forming and nonstationarity with applications to speech,� IEEE Trans. Signal
Process., vol. 49, no. 8, pp. 1614�1626, Aug 2001.

[29] I. Cohen, �Relative transfer function identi�cation using speech signals,� IEEE
Trans. Speech Audio Process., vol. 12, no. 5, pp. 451�459, 2004.

[30] R. Talmon, I. Cohen, and S. Gannot, �Convolutive transfer function generalized
sidelobe canceler,� IEEE Trans. Audio, Speech, Language Process., vol. 17, no. 7,
pp. 1420�1434, 2009.

[31] H. Kuttru�, Room Acoustics, 5th ed. Taylor & Francis, 2009.

[32] R. K. Cook et al., �Measurement of correlation coe�cients in reverberant sound
�elds,� J. Acoust. Soc. Am., vol. 27, no. 6, pp. 1072�1077, 1955.

[33] G. W. Elko, �Spatial coherence functions for di�erential microphones in isotropic
noise �elds,� inMicrophone Arrays, M. Brandstein and D. Ward, Eds. Springer,
2001, pp. 61�85.

[34] M. Souden, J. Chen, J. Benesty, and S. A�es, �Gaussian model-based multichan-
nel speech presence probability,� IEEE Trans. Audio, Speech, Language Process.,
vol. 18, no. 5, pp. 1072�1077, 2010.

[35] H. Ye and R. D. DeGroat, �Maximum likelihood DOA estimation and asymptotic
Cramér-Rao bounds for additive unknown colored noise,� IEEE Trans. Signal
Process., vol. 43, no. 4, pp. 938�949, 1995.

[36] H. Cox, R. Zeskind, and M. Owen, �Robust adaptive beamforming,� IEEE Trans.
Acoust. Speech Signal Process., vol. 35, no. 10, pp. 1365�1376, 1987.

97



References

[37] U. Kjems and J. Jensen, �Maximum likelihood based noise covariance matrix
estimation for multi-microphone speech enhancement,� in Proc. 20th Eur. Signal
Process. Conf. (EUSIPCO), Bucharest, Romania, 2012, pp. 295�299.

[38] K. B. Petersen and M. S. Pedersen, �The matrix cookbook,� Nov. 2012.

[39] J. R. Magnus and H. Neudecker, Matrix Di�erential Calculus with Applications
in Statistics and Econometrics. Wiley, 2007.

[40] J. S. Garofolo et al., DARPA TIMIT Acoustic-Phonetic Continuous Speech Cor-
pus CD-ROM. NIST, 1993.

[41] K. Wagener, J. L. Josvassen, and R. Ardenkjær, �Design, optimization and eval-
uation of a Danish sentence test in noise,� Int. J. Audiology, vol. 42, no. 1, pp.
10�17, 2003.

[42] E. R. Pedersen and P. M. Juhl, �Speech in noise test based on a ten-alternative
forced choice procedure,� Joint Baltic-Nordic Acoust. Meeting, 2012.

[43] I. Holube et al., �Development and analysis of an international speech test signal
(ISTS),� Int. J. Audiology, vol. 49, no. 12, pp. 891�903, 2010.

[44] B. C. J. Moore, An introduction to the psychology of hearing. Brill, 2012.

[45] S. Doclo et al., �Extension of the multi-channel wiener �lter with itd cues for
noise reduction in binaural hearing aids,� in IEEE Workshop Applicat. Signal
Process. Audio Acoust. (WASPAA), New Paltz, NY, 2005, pp. 70�73.

[46] D. J. Sheskin, Handbook of Parametric and Nonparametric Statistical Procedures.
CRC Press, 2011.

[47] G. A. Studebaker, �A rationalized arcsine transform,� J. Speech, Language, Hear-
ing Res., vol. 28, no. 3, pp. 455�462, 1985.

[48] Y. Hu and P. C. Loizou, �A comparative intelligibility study of single-microphone
noise reduction algorithms,� J. Acoust. Soc. Am., vol. 122, no. 3, pp. 1777�1786,
2007.

[49] A. Kuklasi«ski et al., �Multi-channel Wiener �lter for speech dereverberation in
hearing aids � sensitivity to DoA errors,� in 60th Audio Eng. Soc. Int. Conf.,
Leuven, Belgium, 2016, (Paper D in this thesis).

[50] R. Horn and C. Johnson, Matrix Analysis. Cambridge University Press, 1990.

[51] S. Kay, Fundamentals of Statistical Signal Processing, Volume I: Estimation The-
ory, ser. Prentice Hall Signal Processing Series. Prentice-Hall PTR, 1993.

98



Paper D

Multi-channel Wiener �lter for speech dereverberation in

hearing aids � sensitivity to DoA errors

A. Kuklasi«ski, S. Doclo, S. H. Jensen, and J. Jensen

The paper has been presented at the
60th Audio Engineering Society International Conference: Dereverberation

and Reverberation of Audio, Music, and Speech (DREAMS),
Leuven, Belgium, 2016.



Abstract

In this paper we study the robustness of a recently proposed Multi-channel
Wiener Filter-based speech dereverberation algorithm to errors in the assumed
direction of arrival (DoA) of the target speech. Di�erent subsets of micro-
phones of a pair of behind-the-ear hearing aids are used to construct various
monaural and binaural con�gurations of the algorithm. Via a simulation ex-
periment with frontally positioned target it is shown, that when correct DoA
is assumed binaural con�gurations of the algorithm almost double the improve-
ment of PESQ measure over monaural con�gurations. However, in conditions
where the assumed DoA is increasingly incorrect, the performance of the binau-
ral con�gurations is shown to deteriorate more quickly than that of the monau-
ral con�gurations. In e�ect, for large DoA errors it is the simpler, monaural
con�gurations that perform better.

* * *

Due to the original publisher's copyright policy, this paper had to
be removed from this freely-distributable version of the thesis.
The paper can be found in a printed copy of the thesis or accesed
online: http://www.aes.org/e-lib/browse.cfm?elib=18070
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Abstract

We consider an adaptive multi-channel Wiener �lter (MWF) for joint dere-
verberation and noise reduction in hearing aids. Using STOI and FWSegSNR
measures, we compare bilateral and binaural con�gurations of this MWF for:
(a) di�erent directions of arrival (DoAs) of the target speech, (b) di�erent er-
rors in the assumed target DoA, and (c) di�erent levels of the microphone
self-noise. The binaural MWFs, while being much less robust against DoA er-
rors, are found to outperform the bilateral MWF if the correct DoA is assumed.
Furthermore, the bilateral MWF is shown to be a�ected by the microphone self-
noise more than the binaural MWFs. Finally, the advantage of the binaural
over the bilateral MWF is demonstrated through a speech intelligibility test with
reverberant and noisy speech stimuli.

* * *

Due to the original publisher's copyright policy, this paper had to
be removed from this freely-distributable version of the thesis.
The paper can be found in a printed copy of the thesis.
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